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Abstract
Children who speak non-standard dialects of English
show reduced performance not just in language-oriented
topics in school but also in math and science. Technolog-
ical solutions have been rare exactly because of the non-
mainstream nature of their talk, and hence the difficulty in
automatically recognizing their speech and responding to
it with, for example, computer tutors. In order to work to-
wards overcoming this achievement gap, in this work we
investigate African American students’ prosodic invento-
ries in different contexts as a first-step towards building a
system that will be able to automatically recognize, and
respond to, the dialect in which a child is speaking. We
presented children with recordings of a peer (confeder-
ate) speaking in either African American English (AAE)
or Mainstream American English (MAE) during both a
social task and a science task. We found that children
showed decreased prosodic variation and peak slopes dur-
ing speech segments which did not contain AAE features,
resulting in more monotone and breathy utterances than
when they are speaking in AAE. We also found that chil-
dren who were speaking with a “peer” who uses AAE
have increased articulation rates, energy, and pitch varia-
tion. We discuss potential interpretations of these results
that are important to the design of a system to support
linguistic diversity and decrease the achievement gap.
Index Terms: Virtual peers, dialect model, prosodic in-
ventory

1. Introduction
While many schools are promoting cultural diversity
amongst their students, the linguistic diversity that ac-
companies this movement may have a harder time be-
ing supported in schools [1]. Despite the powerful ties
language has to cultural identity, there is a foundation of
research on children’s oral and written language devel-
opment indicating an association between speaking non-
standard dialects of English and reduced literacy skills
and test scores [2, 3]. This issue becomes particularly

salient in inner-city schools, where non-standard dialects,
particularly African American English (AAE) may be
one of, or the only, dialect that students speak, and where
teachers may have quite strong beliefs about the “infe-
riority” of AAE. The Black-White achievement gap is
well-known and persistent in the American educational
system [4], and providing support in schools for students
who speak non-mainstream dialects may help to improve
students’ test scores and promote achievement.

One method of addressing the issue may be through
supporting students in acquiring awareness of dialect, and
the different social contexts in which different dialects
may be most successfully employed. [5] and shifting [6].
In its favor, these strategies suggest that the ability to
selectively switch between MAE and AAE in appropri-
ate social contexts is indicative of greater meta-linguistic
awareness, which may help students succeed in school
more generally. Children in diverse linguistic communi-
ties may be presented with more opportunities not only
to notice differences between spoken dialects, but also to
practice shifting between them for specific contexts. In
particular, children’s acquisition of and proficiency with
dialect shifting ability may be difficult to acquire if they
do not have classmates who happen to speak in MAE.

In response to this, we have previously built an em-
bodied conversational agent, Alex, who was designed to
strategically employ either an AAE or MAE dialect dur-
ing interactions with students [7]. Our initial studies with
Alex, who began speaking in AAE during a collabora-
tive playing task and then switched into MAE for a sci-
ence presentation task, found that 3rd grade students who
spoke with Alex during a science presentation task used
less AAE than did students who completed the same task
with a human peer partner. Currently, we are working
with both elementary school teachers and students to ex-
pand on our design to create an agent that can be deployed
in classrooms as a stable support for students learning to
dialect shift. As presented in our recent work on collab-
oration with virtual peers ([8], these agents may fill a la-
cuna in classrooms by having the ability to automatically
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Figure 1: Visualization of the two recording conditions
MAE speaking peer and AAE speaking peer. Blue seg-
ments indicate virtual peer’s speech and red segments in-
dicate students’ segments.

recognize certain student skills and weaknesses, and ad-
dressing them through dialogue. Though it may be im-
practical (or impossible!) for teachers to focus on every
students’ dialectal level individually while also teaching
the primary curriculum, agents who are already working
with students may be able to automatically identify the
dialect students are using, and respond accordingly. In
this work, we focus on two questions in this area: (1) are
we able to automatically detect when African American
students are speaking in AAE or MAE at the utterance
level, and (2) will students accommodate to virtual peers
who are speaking in either AAE or MAE?

2. Study

2.1. Study design

In this work, we perform an acoustic analysis of 3rd and
4th grade African American students who were record-
ing speech for a virtual partner during both a social task
and a science task. Students were randomly-assigned
virtual partners who all provided identical content either
delivered in AAE or MAE. The virtual partner, Jamie,
was represented by an African American avatar, and, it
was explained, was a student in their grade at another
school just like theirs. Jamie’s talk was recorded by a
native speaker of African American and Mainstream En-
glish whose voice was pitch-shifted to sound younger.
Students heard Jamie give a 3.5 minute social introduc-
tion, as well as complete a 3.5 minute science compar-
ison activity. In the study procedure, Jamie provided
first provided a social introduction, and then student free-
recorded their own 3-4 minute social introduction for
Jamie. Afterwards, the student completed a science task
that required them to free-record observations, hypothe-
ses, comparisons, and scientific questions about a set of
creatures we provided. Jamie then provided a 3.5 minute
recording of the science with a different set of creatures.
After listening to Jamie’s recording, the students were

Feature MAE peer AAE peer
f0 212.20 (± 63.55) 210.28 (± 58.62)
Energy -43.60 (± 17.42) -44.08 (± 17.82)

Table 1: Feature comparison of virtual peer’s speech
across conditions. With f0 being the virtual peer’s fun-
damental frequency. Mean and standard deviation values
over utterances are reported.

asked to complete the same science task again with an-
other set of creatures. This procedure allows us to inves-
tigate students’ change in dialect features based on the di-
alect pattern of their virtual partner between a social con-
text and a science context, as well as between two science
tasks separated by a virtual peer modeling science talk.

Jamie’s voice did not vary strongly over the two
recording conditions MAE and AAE, in order to control
for entrainment effects, see Table 1 for details.

2.2. Hypotheses

There are currently no ASR systems capable of deal-
ing with childrens spontaneously produced AAE. In this
work, then we focused our acoustic analysis primarily
on suprasegmental features, and investigated two pri-
mary hypotheses: (1) There will be significant differ-
ences in the acoustic signal between utterances that had
AAE features and utterances that did not have AAE fea-
tures, and (2) free-speech recorded in a social setting
to an AAE-speaking virtual peer would be significantly
different acoustically from speech recorded to an MAE-
speaking virtual peer.

2.2.1. Hypothesis 1: MAE vs. AAE

We expected to see a series of significant suprasegmental
acoustic differences between child free-speech segments
that were annotated as either having at least one phonetic
or morphosyntactic AAE feature in the clause(AAE), or
no AAE features in the clause(MAE). These annotated
speech samples came from the science task component
of our study. Although overall African Americans use a
wider pitch range than European English speakers, par-
ticularly during free (rather than read) speech [9], it is
unknown if bidialectal African American speakers will
have different pitch ranges when they speak different di-
alects. We hypothesized that indeed increased pitch shifts
would occur primarily during speech with AAE features.
Additionally, we expected to find other differences when
the children were speaking MAE, such as voice quality
variation between the two dialects, of the kind that has
been correlated with decreased comfort level or increased
cognitive load.



2.2.2. Hypothesis 2: Speech to an MAE vs. AAE-
speaking peer

We additionally expected that there would be differences
in the suprasegmental acoustic speech signals between
students who were recording a social introduction to a
virtual partner who spoke AAE vs. MAE. Because there
are no strong differences between the acoustic signals in
the social recordings given by the virtual partners, differ-
ences in children’s speech would likely be for social or
cognitive reasons, rather than unconsciously entraining
to the acoustic features of the model.

3. Feature extraction
In this section we briefly discuss the prosodic features
used in the statistical analysis. We chose these features as
they have proven to be robust representatives of various
prosodic phenomena in previous analysis. The features
include the following measures:

• Energy (in dB) is a measure of the intensity of
the speech signal. Higher values indicate louder
speech.

• Articulation rate is calculated by identifying the
number of syllables per second. The syllables are
detected by identifying vowels in the speech.

• Fundamental frequency (f0) is the base fre-
quency of the speech signal. It is the frequency the
vocal folds are vibrating at during voiced speech
segments.

• Peak slope is a measure suitable for the identifi-
cation of breathy to tense voice qualities. Values
closer to zero are considered as more breathy (see
Figure 2).

• Spectral stationarity is a value that captures the
fluctuations and changes in the voice signal. High
values indicate a stable vocal tract and little change
in the speech (e.g. during a hesitation or sustained
elongated vowels).

The following sections detail each acoustic feature.

3.1. Energy in dB

The energy of each speech frame is calculated on 32 ms
windows with a shift of 10 ms (i.e. 100Hz sample rate).
This speech windoww(t) is filtered with a hamming win-
dow and the energy

e(t) =

|w(t)|∑
i=1

wi(t)
2 (1)

is calculated and converted to the dB-scale

edB(t) = 10 · log10(e(t)). (2)

3.2. Articulation rate

Detection of syllable nuclei to calculate the articulation
rate were made using the method introduced in [10],
which is based on intensity peak detection of voiced seg-
ments of speech in Praat. On an abstract level, the script
introduced in [10] follows a simple peak detection using
the signal intensity. Peaks that are preceded and followed
by considerable dips in intensity (based on a predefined
threshold, e.g. -2 dB) are considered syllable nuclei can-
didates. All detected peaks, that are not voiced are re-
moved from the selection in order to obtain the syllable
nuclei without the need of a preceding transcription.

3.3. Fundamental frequency f0

In [11], a method for f0 tracking based on residual har-
monics, which is especially suitable in noisy conditions,
is introduced. The residual signal r(t) is calculated from
the speech signal s(t) for each frame using inverse filter-
ing. This process removes strong influences of noise and
vocal tract resonances. For each r(t) the amplitude spec-
trumE(f) is computed, showing peaks for the harmonics
of f0, the fundamental frequency. Then, the summation
of residual harmonics (SRH) is computed as follows [11]:

SRH(f) = E(f)+

Nharm∑
k=2

[E(k·f)−E((k−1

2
)·f)], (3)

for f ∈ [f0,min, f0,max], with f0,min = 50 and
f0,max = 300. The frequency f for which SRH(f)
is maximal is considered the fundamental frequency of
this frame. By using a simple threshold θ, the unvoiced
frames are discarded as in [11].

3.4. Peak slope

This voice quality parameter is based on features derived
following a wavelet based decomposition of the speech
signal [12]. The parameter, named peak slope, is de-
signed to identify glottal closure instances from glottal
pulses with different closure characteristics. It was used
to differentiate between breathy, modal, and tense voice
qualities in [13]. The following equation is used for de-
composing the speech signal:

g(t) = − cos(2πfnt) · exp(−
t2

2τ2
), (4)

where the speech signal s(t) is convolved with g( t
si
), and

si = 2i and i = 0, 1, 2, . . . , 5. This essentially is the
application of an octave-band filter bank with the center
frequencies being: 8 kHz, 4 kHz, 2 kHz, 1 kHz, 500 Hz
and 250 Hz. Then the local maximum is measured at
each of the signals obtained from the decomposition and
a regression line is fit to these peaks. In Figure 2, it can be
seen that for an /o/ vowel produced by a male speaker in
breathy, modal and tense voice qualities the slope of the
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Figure 2: Peak amplitudes, from signals with different
center frequencies, with regression lines for an /o/ vowel
produced by a male speaker in breathy, modal and tense
voice qualities

regression line is clearly different. Hence, the peak slope
parameter is simply the slope coefficient of the regression
line. In the original publication [12] this was carried out
on individual phone segments. In the current study it is
carried out on the frame level of the entire speech signal.
A frame length of 32 ms and shift of 10 ms (i.e. 100Hz
sampling rate) is used.

3.5. Spectral stationarity

To characterize the range of the prosodic inventory used
over utterances, we make use of the so called spectral
stationarity measure ss. This measurement was previ-
ously used in [14] as a way of modulating the transition
cost used in the dynamic programming method used for
f0 tracking. Spectral stationarity, ss is measured with:

ss =
0.2

itakura(fi, fi−k)− 0.8
∈ [0, 1], (5)

where itakura(.) is the Itakura distortion measure [15]
of the current speech frame fi and fi−k is the previous
frame with k = 1. We use a relatively long frame length
of 60 ms (with as shift of 10 ms; sampling rate 100Hz)
and frames are windowed with a Hamming window func-
tion before measuring ss. The long frame length was
used in the attempt to characterize relatively long peri-
ods of maintained vocal tract articulation. ss is close to
1 when the spectral characteristics of adjacent frames are
very similar and goes closer to 0 if the frames show a high
degree of difference.

4. Statistical evaluation
For the statistical analysis we employed standard un-
paired t-tests comparing if the mean values of the
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Figure 3: Plots with error bars comparing observations
in mainstream American English utterances (MAE) vs.
African American English utterances (AAE). Three fea-
tures are displayed including spectral stationarity, peak
slope, and standard deviation of the peak slope. Signif-
icant differences are highlighted with labeled brackets,
∗ for p < .05 and ∗∗ for p < .01 in unpaired t-tests.

prosodic features for one population are the same as those
of the other population. In particular, we test the two hy-
pothesis of Section 2:

• In Section 4.1 a more fine-grained analysis is con-
ducted, by comparing the utterances of the science
tasks of all kids that are annotated as containing
AAE fragments (i.e. morphosyntactic or phono-
logical) and the utterances that are annotated as be-
ing free of any AAE fragments, in order to test Hy-
pothesis 1.

• Section 4.2 compares the prosodic parameters in-
troduced in Section 3 on a session level, in order
to test Hypothesis 2. In particular the social talk
of the kids recorded within the MAE speaking peer
condition is compared to the social talk of kids in
AAE speaking peer conditions.

4.1. Hypothesis 1: MAE vs. AAE

Thirty of the science talk sessions have been annotated at
an utterance level. Each utterance additionally received
a label whether or not it contains one or more AAE ele-
ments (i.e. phonological, morphosyntactic or both AAE
segments). In total we found 420 utterances containing
AAE fragments and 414 without. The average length of
AAE utterances is 6.19 s (standard deviation: 4.07) and
the average length of MAE utterances is 5.59 s (standard
deviation: 3.15). For this analysis, we compare the utter-
ances with AAE elements with those that are purely MAE
using the aforementioned prosodic parameters. The re-
sults are summarized in Table 2, and three features are
visualized in Figure 3.



Feature Mean Standard deviation
MAE AAE MAE AAE

Fundamental frequency 230.96 (±24.42)∗∗ 226.57 (±22.30)∗∗ 45.73 (±17.06) 45.386 (±12.64)
Spectral stationarity 0.17 (±0.05)∗∗ 0.15 (±0.04 )∗∗ 0.13 (±0.02) 0.13(±0.02)
Energy -32.56 (±4.42)∗∗ -31.57 (±4.62)∗∗ 3.59 (±2.98) 3.68 (±2.43)
Peak slope -0.09 (±0.01)∗ -0.11 (±0.06)∗ 0.11 (±0.11)∗∗ 0.14 (±0.11)∗∗

Articulation rate 0.23 (±0.20) 0.22 (±0.18) 0.06 (±0.10)∗∗ 0.09 (±0.12)∗∗

Table 2: Statistics and comparison of prosodic values for AAE and MAE annotated utterances for all conditions. Mean
and standard deviation (Std.) values over utterances are reported. For each the corresponding mean and standard deviation
values are reported and separated by /. Significant differences are marked with ∗ for p < .05 and ∗∗ for p < .01 in unpaired
t-tests.

We could find significant results for the mean values
of the fundamental frequency (f0), spectral stationarity,
speech energy and peak slope. Further, significant results
were found for the standard deviations of values for peak
slope and articulation rate.

In particular, the average f0 varies significantly
(MAE: 230.96 vs. AAE: 226.57; p = 0.006). The aver-
age spectral stationarity is significantly greater for utter-
ances containing no AAE (MAE: 0.17 vs. AAE: 0.15; p
= 0.005). Also, there is a significant difference in average
energy measurements (MAE: -32.56 vs. AAE: -31.57; p
= 0.002). Further, average (MAE: -0.09 vs. AAE: -0.11;
p = 0.02) and standard deviations (MAE: 0.11 vs. AAE:
0.14; p = 0.001) of peak slope values vary significantly,
and the standard deviation of articulation rate is signifi-
cantly different for the two sets of data (MAE: 0.06 vs.
AAE: 0.09; p = 0.002). All other prosodic values did not
show significant differences.

4.2. Hypothesis 2: Speech to an MAE vs. AAE-
speaking peer

In this section we report the statistical analysis of the
prosodic parameters for the social talk segments, i.e. Hy-
pothesis 2. Social talk segments in the MAE speaking
peer condition (8 segments in total) are compared to those
of the other conditions (20 segments in total). As men-
tioned in Section 2, the social talk segments in those con-
ditions are distinct from one another solely with respect
to the speech the virtual peer uses (MAE vs. AAE). The
statistical results are reported in Table 3, and three fea-
tures are additionally visualized in Figure 4.

Significant differences between the conditions could
be found for the mean values of spectral stationarity,
speech energy, and articulation rate. Additionally, the
standard deviations for fundamental frequency (f0), spec-
tral stationarity and energy were statistically significantly
different from each other.

Table 3, shows that the average f0 of the children in
the two different conditions is not significantly different
(Condition 1: 227.75 vs. Condition 2+3: 235.18; p =
0.46), however, the standard deviations are (Condition 1:
43.63 vs. Condition 2+3: 64.80; p = 0.008). For the
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Figure 4: Plots with error bars comparing observations
in MAE speaking peer condition vs. AAE speaking peer
conditions. Three features are displayed including artic-
ulation rate, energy, and standard deviation of the funda-
mental frequency. Significant differences are highlighted
with labeled brackets, ∗ for p < .05 and ∗∗ for p < .01 in
unpaired t-tests.

spectral stationarity the difference is significant for both
average (Condition 1: 0.15 vs. Condition 2+3: 0.23; p =
0.04) and standard deviation (Condition 1: 0.13 vs. Con-
dition 2+3: 0.15; p = 0.04). Similarly, the average energy
(Condition 1: -36.15 vs. Condition 2+3: -29.45; p = 0.02)
and standard deviations (Condition 1: 7.24 vs. Condition
2+3: 2.44; p = 0.001) vary significantly. Additionally, the
average articulation rate (Condition 1: 0.42 vs. Condition
2+3: 0.91; p = 0.03) is significantly different for the two
conditions. All other prosodic values did not show sig-
nificant differences.

5. Discussion
As reported in Section 4, we found several statistically
significant differences in prosodic parameters in students’
speech dependent on a sequence level based on the dif-
ferent conditions, as well as on an utterance level across
the conditions. These findings support the research hy-
potheses presented in Section 2, yielding two main find-



Feature Mean Standard deviation
MAE peer AAE peer MAE peer AAE peer

Fundamental frequency 227.75 (±18.38) 235.18 (±24.74 ) 43.630 (±9.75)∗∗ 64.80 (±10.01)∗∗

Spectral stationarity 0.15 (±0.03)∗ 0.23 (±0.02 )∗ 0.13 (±0.01)∗ 0.15 (±0.03)∗

Energy -36.15 (±4.65)∗ -29.45 (±2.90)∗ 7.24 (±2.18)∗∗ 2.44 (±1.57)∗∗

Peak slope -0.16 (±0.07) -0.12 (±0.10) 0.27 (±0.17) 0.15 (±0.09)
Articulation rate 0.42 (±0.12)∗ 0.91 (±0.49)∗ 0.29 (±0.17) 0.58 (±0.56)

Table 3: Statistics and comparison of prosodic values for social talk segments in recording MAE speaking peer condition
vs. AAE speaking peer conditions. Mean and standard deviation (Std.) values over segments are reported. For each the
corresponding mean and standard deviation values are reported and separated by /. Significant differences are marked
with ∗ for p < .05 and ∗∗ for p < .01 in unpaired t-tests.

ings: (1) there are significant differences in the acous-
tic patterns of clauses produced by an African American
child depending on whether that clause contained or not
at least one phonetic or morphosyntactic AAE feature.
Interpretations of these findings are presented below, and
(2) young African American children are sensitive to the
dialect of a virtual partner and it affects their prosody.

5.1. Hypothesis 1: MAE vs. AAE

Based on the manual annotation of 30 science talk se-
quences across all conditions, we analyzed prosodic pa-
rameters of utterances that either contained or not at
least one AAE phonological and morphosyntactic fea-
ture. These sequences were all taken from a science
task, where students were making observations and hy-
potheses about imaginary creatures. Indeed, as predicted,
we found several parameters, as reported in Section 4.1,
that vary significantly between the two groups of utter-
ances. The exact differences are summarized in Table
2 and three distinctive measures are visualized in Figure
3. In particular, we found that the spectral stationarity is
significantly higher for pure MAE utterances, which in-
dicates that there is less variation in prosody present in
those utterances than in the ones containing AAE frag-
ments. We additionally find that MAE utterances have a
lower peak slope, and are thus breathier than their AAE
counterparts.

If these acoustic differences are reliable, it may allow
us to train a model to automatically characterize the dif-
ferences between AAE and MAE utterances, and then au-
tomatically recognize when a child is switching between
AAE and MAE during free speech. In turn, this will al-
low us to build a system that responds to a child’s dialect
use with appropriate feedback, adapting the interaction
with the child based on the child’s dialect use. While
it is known that African American free-speech typically
contains more pitch variation than European American
free-speech [9], our results additionally show that partic-
ular utterances from one single African American child
that contain an AAE feature have more variation than ut-
terances without any AAE features spoken by that same

child. These results are promising for the development of
a system to perform dialect identification; however, be-
fore the systems adaptive responses can be implemented,
further analyses are needed to determine what is causing
the differences we are seeing.

5.2. Hypothesis 2: Speech to an MAE vs. AAE-
speaking peer

We found that the preceding interaction with an MAE
speaking peer influenced the children’s prosody in the
subsequent social talk session (see Section 4.2). Our re-
sults demonstrate that children speaking with an MAE-
speaking partner employed more limited pitch ranges
(i.e. smaller variations in fundamental frequencies), lim-
ited loudness (i.e. reduced speech energy), and reduced
speaking rates (i.e. lowered articulation rate), as shown
in Table 3 and Figure 4. Though there was slightly more
pitch variation in the MAE social recording we gave
the students, children who were speaking to an AAE-
speaking peer responded with more pitch variation than
children who were speaking to an MAE-speaking peer.
This indicates that students were not simply entraining to
the pitch variation presented in the model.

5.3. Possible interpretations

We propose three possible interpretations of the data to
explain these acoustic differences: (1) the linguistic hy-
pothesis, (2) the social hypothesis, or (3) the cognitive
hypothesis.

Our linguistic interpretation proposes that there are
intrinsic features within the AAE and MAE dialects that
produce these prosodic differences. In this case, it would
be the expression of AAE features that produces prosodic
differences, regardless of other social or cognitive phe-
nomena. This would be the easiest interpretation for im-
plementing automatic dialect detection at the utterance
level with young African American students. However,
dialect use is difficult to separate from identity and cul-
ture, which leads us to assess these results from a social
lens.

It could be that African American children who are



talking to an MAE-speaking peer feel intimidated, dif-
ferent, or out of place. They may also feel like they
need to try and produce more MAE to match that peer,
and as such, they force themselves to hyper-articulate.
This could explain the low-energy, slower, more mono-
tone recordings of the children in the MAE social condi-
tion. If this interpretation holds true, it may be important
to train models on African American children recording
for an MAE-speaking virtual peer with whom they have
already built a rapport and feel comfortable. If the so-
cial interpretation is true, our results may accurately iden-
tify dialect features in the beginning of an interaction, but
may become less reliable over time as the child builds a
comfortable relationship with the agent.

Finally, the cognitive interpretation would expect that
the decreased speed, decreased energy, and increased
monotony of the recordings to MAE-speaking peers is
due to the increased difficulty of speaking a more foreign
dialect. Children partnered with an MAE-speaking peer
may have been exerting increased effort to speak MAE,
causing these acoustic effects. Additionally, it could be
that children spoke without using any AAE features when
they were talking about more complicated science mate-
rial, and the increased breathiness and reduced pitch vari-
ation during MAE utterances can be just due to the in-
creased difficulty of the science, and not the difficulty of
speaking the dialect. If the cognitive hypothesis is true,
our results may hold in the beginning of an interaction
but, as mentioned for the social hypothesis, may become
less applicable over time as children master speaking in
an MAE dialect.

Further analyses need to be done to identify which, or
how many, of these interpretations are contributing to the
results presented in this paper. Indeed, the type of system
we can build varies widely depending on the underlying
reasons behind children’s dialect shifting.

6. Conclusion
Technological interventions to support linguistically-
diverse students have great potential to increase student
success, but may hinge on being able to automatically
recognize certain features of children’s speech even when
ASR is still beyond reach. In this work, we analyze a
corpus of students recording monologues for an imag-
ined peer as a first step to determining if we can build
an automatic recognizer of the dialect African American
children are employing on the utterance level. We found
that children who are recording speech for an MAE-
speaking virtual partner talk more slowly, talk more qui-
etly, and have reduced pitch variation than students who
are recording for a virtual partner who speaks AAE. We
also found that, across all conditions, students had more
pitch-variation and less “breathy” tones during utterances
that had at least one AAE feature than utterances that did

not have any AAE features.
These results are promising, as they indicate it may

be possible to train a model to recognize the different di-
alects African American children may be using in any
given utterance, which could have important pedagogical
implications for the design of a technological intervention
to support students in dialect-shifting. If a pedagogical
system can reliably recognize when a student is speaking
AAE, it may be able to provide feedback in the moment,
or change its approach to increase students’ awareness of
their dialect. However, because dialects are complicated
expressions of identity, even when we provide all children
the same model of partner speech within every condition,
it is not possible to identify the underlying reasons behind
the acoustic differences we see in our results. The results
we found may additionally be due to social artifacts (such
as African American children feeling self-conscious and
trying to hyper-articulate when speaking with an MAE-
speaking peer, affecting their acoustic patterns) or cogni-
tive artifacts (such as children choosing to speak in MAE
for more complicated science content, which is affecting
their acoustic patterns.) To hone in on what is causing
these acoustic differences, we look towards annotating
the content of the recorded speech to see if there are clues
in the content of what the children are saying to help us
interpret the prosodic differences shown in this corpus.
Once we can accurately predict the dialect of the students,
we look to create a virtual peer dialogue agent that will
be able to identify the child’s dialect, provide feedback
to the child, and adjust the pedagogical approach to best
support the student.
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