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Abstract

Hedges play an important role in the manage-
ment of conversational interaction. In peer-
tutoring, they are notably used by tutors in
dyads (pairs of interlocutors) experiencing low
rapport to tone down the impact of instructions
and negative feedback. Pursuing the objective
of building a tutoring agent that manages rap-
port with students in order to improve learning,
we used a multimodal peer-tutoring dataset to
construct a computational framework for iden-
tifying hedges. We compared approaches re-
lying on pre-trained resources with others that
integrate insights from the social science litera-
ture. Our best performance involved a hybrid
approach that outperforms the existing base-
line while being easier to interpret. We employ
a model explainability tool to explore the fea-
tures that characterize hedges in peer-tutoring
conversations, and we identify some novel fea-
tures, and the benefits of such a hybrid model
approach.

1 Introduction

Rapport, most simply defined as the “. . . relative
harmony and smoothness of relations between peo-
ple . . . ” (Spencer-Oatey, 2005), has been shown to
play a role in the success of activities as varied as
psychotherapy (Leach, 2005) and survey interview-
ing (Lune and Berg, 2017). In peer-tutoring, rap-
port, as measured by the annotation of thin slices of
video, has been shown to be beneficial for learning
outcomes (Zhao et al., 2014; Sinha and Cassell,
2015). The level of rapport rises and falls with
conversational strategies deployed by tutors and
tutees at appropriate times, and as a function of the
content of prior turns. These strategies include self-
disclosure, referring to shared experience, and, on
the part of tutors, giving instructions in an indirect
manner. Some work has attempted to automatically
detect these strategies in the service of intelligent
tutors (Zhao et al., 2016a), but only a few strate-
gies have been attempted. Other work has con-

centrated on a "social reasoning module" (Romero
et al., 2017) to decide which strategies should be
generated in a given context, but indirectness was
not among the strategies targeted. In this paper, we
focus on the automatic classification of one spe-
cific strategy that is particularly important for the
tutoring domain, and therefore important for intel-
ligent tutors: hedging, a sub-part of indirectness
that "softens" what we say. This work is part of a
larger research program with the long-term goal of
automatically generating indirectness behaviors for
a tutoring agent.

Figure 1: A mock conversation displaying each type of
hedged formulation.

According to Brown and Levinson (1987),
hedges are part of the linguistic tools that interlocu-
tors use to produce politeness, by limiting the face
threat to the interlocutor (basically by limiting the
extent to which the interlocutor might experience
embarrassment because of some kind of poor per-
formance). An example is "that’s kind of a wrong
answer". Hedges are also found when speakers
wish to avoid losing face themselves, for exam-
ple when saying ("I think I might have to add 6.").
Madaio et al. (2017) found that in a peer-tutoring
task, when rapport between interlocutors is low, tu-
tees attempted more problems and correctly solved
more problems when their tutors hedged instruc-



tions, which likewise points towards a "mitigation
of face threat" function. Hedges can also be asso-
ciated with a nonverbal component, for example
averted eye gaze during criticism (Burgoon and
Koper, 1984). Hedges are not, however, always ap-
propriate, as in "I kind of think it’s raining today."
when the interlocutors can both see rain (although
it might be taken as humorous). These facts about
hedges motivate a way to automatically detect them
and, ultimately (although not in the current work)
also generate them. In both cases we first have
to be able to characterize them using interpretable
linguistic features, which is what we address in
the current paper. Thus, in the work described
here, based on linguistic descriptions of hedges
(Brown and Levinson, 1987; Fraser, 2010), we built
a rule-based classifier. We show that this classifier
in combination with additional multimodal inter-
pretable context-dependent features significantly
improves the performance of a machine learning
model for hedges, compared to a less interpretable
deep learning baseline from Goel et al. (2019) us-
ing word embeddings. We also relied on a machine
learning model explanation tool (Lundberg and Lee,
2017) to investigate the linguistic features related
to hedges in the context of peer-tutoring, primarily
to see if we could discover surprising features that
the classification model would associate to hedges
in this context, and we describe those below. The
code of the models described in the paper is also
provided. 1

2 Related work

Hedges: According to Fraser (2010), hedging is
a rhetorical strategy that attenuates the strength
of a statement. One way to produce a hedge is
by altering the full semantic value of a particu-
lar expression through Propositional hedges (also
called Approximators in Prince et al. (1982)), as in
"You are kind of wrong," that reduce prototypical-
ity (i.e accuracy of the correspondence between the
proposition and the reality that the speaker seeks
to describe). Propositional hedges are related to
fuzzy language (Lakoff, 1975), and therefore to the
production of vagueness (Williamson, 2002) and
uncertainty (Vincze, 2014).
A second kind are Relational Hedges (also called
Shields in Prince et al. (1982)), such as “I think
that you are wrong.” or “The doctor wants you to
stop smoking.”, conveying that the proposition is

1https://github.com/AnonymousHedges/HedgeDetection

considered by the speaker as subjective. In a further
sub-division, Attribution Shields, as in "The doc-
tor wants you ...", the involvement of the speaker
in the truth value of the proposition is not made
explicit, which allows speakers not to take a stance.
As described above, Madaio et al. (2017) found
that tutors who showed lower rapport with their
tutees used more hedged instructions (they also
employed more positive feedback), however this
was only the case for tutors with a greater belief in
their ability to tutor. Tutees in this context solved
more problems correctly when their tutors hedged
instructions. No effect of hedging was found for
dyads (pairs of interlocutors) with greater social
closeness. However, the authors did not look at the
specific linguistic forms these teenagers used.
Rowland (2007) also describes the role that hedg-
ing plays in this age group, showing that students
use both relational ("I think that John is smart.")
and propositional ("John is kind of smart.") hedges
for much the same shielding function of demon-
strating uncertainty, to save them from the risk
of embarrassment if they are wrong. The author
observed that teens used few Adaptors (kind of,
somewhat) and preferred to use Rounders (around,
close to). However, this study was performed with
an adult and two children, possibly biasing the re-
sults due to the participation of the adult investiga-
tor. Hedges have been included in virtual tutoring
agents before now. (Howard et al., 2015) integrated
hedges in a tutor agent for undergraduates in CS, as
a way to encourage the student to take the initiative.
Hedges have also been used as a way of integrat-
ing Brown and Levinson’s politeness framework
(Wang et al., 2008; Schneider et al., 2015) in vir-
tual tutoring agents. Results were not broken out
by strategy, but politeness in general was shown
to positively influence motivation and learning, in
certain conditions.
Computational methods for hedge detection:
A number of studies have targeted the detection
of hedges and uncertainty in text (Medlock and
Briscoe, 2007; Ganter and Strube, 2009; Tang et al.,
2010; Velldal, 2011; Szarvas et al., 2012), partic-
ularly following the CoNLL 2010 dataset release
(Farkas et al., 2010). However, this work is not
as related to hedges in conversation, as it focuses
on a formal and academic language register (Hy-
land, 1998; Varttala, 1999). As noted by Prokofieva
and Hirschberg (2014), the functions of hedges are
domain- and genre-dependent, therefore this bias



towards formality implies that the existing work
may not adapt well to the detection of hedges in
conversation between teenagers. A consequence is
that the existing work does not consider terms like
"I think," since opinions rarely appear in an aca-
demic writing dataset. Instructions are also almost
absent ("I think you have to add ten to both sides."),
a strong limitation for the study of conversational
hedges since it is in requests (including tutoring in-
structions) that indirect formulations mostly occur
according to Blum-Kulka (1987). Prokofieva and
Hirschberg (2014) also note that it is difficult to
detect hedges because the word patterns associated
with them have other semantic and pragmatic func-
tions: considering "I think that you have to add x
to both sides." vs "I think that you are an idiot.",
it is not clear that the second use of "I think that"
is an hedge marker. They advocate using machine
learning approaches to deal with the ambiguity of
these markers. Working on a conversational dataset,
Ulinski et al. (2018) built a computational system
to assess speaker commitment (i.e. at which point
the speaker seems convinced by the truth value
of a statement), in particular by relying on a rule-
based detection system for hedges. Compared to
that work, our rule-based classification model is
directly detecting hedge classes, and we employ
the predictions of the rule-based model as a feature
for stronger machine learning models, designed to
lessen the impact of the imbalance between classes.
We also consider apologies when they serve a mit-
igation function (we then call them Apologizers),
as was done by the authors of our corpus, and we
also use the term subjectivizers as defined below,
to be able to compare directly with the previous
work carried out on this corpus. As far as we know,
only Goel et al. (2019) have worked with a peer-
tutoring dataset (the same one that we also use),
and they achieved their best classification result by
employing an Attention-CNN model, inspired by
Adel and Schütze (2017).

3 Problem statement

We consider a set D of conversations D =
(c1, c2, ..., c|D|), where each conversation is com-
posed of a sequence of independent syntactic
clauses ci = (u1, u2, ..., uM ), where M is the
number of clauses in the conversation. Note
that two consecutive clauses can be produced
by the same speaker. Each clause is associated
with a unique label corresponding to the differ-

ent hedge classes described in Table 1: yi ∈ C
= {Propositional Hedges, Apologizers, Subjec-
tivizers, Not hedged}. Finally, an utterance ui
can be represented as a vector of features X =
(x1, x2, ..., xN ), where N represents the number of
features we used to describe a clause. Our first
goal is to design a model that correctly predicts the
label yi associated to ui. It can be understood as
the following research question:
RQ1: "Which models and features can be used
to automatically characterize hedges in a peer-
tutoring interaction?"
Our second goal is to identify, for each hedge class,
the set of features Fclass = {fk}, k ∈ [1, N ] sorted
by feature importance in the classification of class.
It corresponds to the following research question:
RQ2: "What are the most important linguistic
features that characterize our hedge classes in a
peer-tutoring setting?"

4 Methodology

4.1 Corpus

Data collection: The dialogue corpus used here
was collected as part of a larger study on the effects
of rapport-building on reciprocal peer tutoring. 24
American teenagers (mean age = 13.5, min = 12,
max = 15), half male and half female, came to
a lab where half of the participants were paired
with a same-age, same-gender friend, and the other
half paired with a stranger. The participants were
assigned to a total of 12 dyads in which the par-
ticipants alternated tutoring one another in linear
algebra equation solving for 5 weekly hour-long
sessions, for a total corpus of nearly 60 hours of
face-to-face interactions. Each session was struc-
tured such that the students engaged in brief social
chitchat in the beginning, then one of the students
was randomly assigned to tutor the other for 20
minutes. They then engaged in another social pe-
riod, and concluded with a second tutoring period
where the other student was assigned the role of
tutor. Audio and video data were recorded, tran-
scribed, and segmented for clause-level dialogue
annotation, providing nearly 24 000 clauses. Non-
speech segments (notably fillers and laughter) were
maintained. Because of temporal misalignment for
parts of the corpus, many paraverbal phenomena,
such as prosody, were unfortunately not available
to us. Since our access to the dataset is covered by
a Non-Disclosure Agreement, it cannot be released



publicly. However the original experimenters’ In-
stitutional Review Board (IRB) approval allows us
to view, annotate, and use the data to train models.
This also allows us to provide a link to a pixe-
lated video example in the GitHub repository of
the project2.
Data annotation: The dataset was previously an-
notated by Madaio et al. (2017), following an anno-
tation manual that used hedge classes derived from
Rowland (2007) (see Table 1). Only the task peri-
ods of the interactions were annotated. Comparing
the annotations with the classes mentioned in the
related work section, Subjectivizers correspond to
Relational hedges (Fraser, 2010), Propositional
hedges and Extenders correspond to Approxima-
tors (Prince et al., 1982) with the addition of some
discourse markers such as just. Apologizers are
mentioned as linguistic tools related to negative
politeness in Brown and Levinson (1987). Krippen-
dorff’s alpha obtained for this corpus annotated by
four coders was over 0.7 for all classes (denoting
an acceptable inter-coder reliability according to
Krippendorff (2004)). The dataset is widely im-
balanced, with more than 90% of the utterances
belonging to the Not hedged class.
In reviewing the corpus and the annotation man-
ual, however, we noticed two issues. First, the
annotation of the Extenders class was inconsis-
tent, leading to the Extenders and Propositional
hedges classes carrying similar semantic functions.
We therefore merged the two classes and grouped
utterances labeled as Extenders and those labeled
as Propositional hedges under the heading of
Propositional hedges. Second, the annotation of
clauses containing the tokens "just" and "would"
(two terms occurring frequently in the dataset that
are key components of Propositional Hedges and
Subjectivizers but that are not in fact hedges in all
cases) was also inconsistent, leading to virtually
all clauses with those two tokens being considered
hedges. We therefore re-considered all the clauses
associated with any of the hedge classes, as well
as all the clauses in the "Not hedged" class that
contained "just" or "would". The re-annotation
was carried out by two annotators who achieved a
Krippendorff’s alpha inter-rater reliability of .9 or
better for Apologizers, Subjectivizers, and Propo-
sitional hedges before independently re-annotating
the relevant clauses. An example of a re-annotation
was removing "I would kill you!" from the hedge

2https://github.com/AnonymousHedges/HedgeDetection

classes.

4.2 Features

Label from rule-based classifier (Label RB): We
use the class label predicted by the rule-based clas-
sifier described in Section 4.3 as a feature. Our
hypothesis is that the machine learning model can
use this information to counterbalance the class
imbalance. To take into account the fact that some
rules are more efficient than others, we weighted
the class label resulting from the rule-based model
by the precision of the rule that generated it.
Unigram and bigram: We count the number of
occurrences of unigrams and bigrams of the corpus
in each clause. We used the lemma of the words for
unigrams and bigrams using the nltk lemmatizer
(Loper, 2002) and selected unigrams and bigrams
that occurred in the training dataset at least fifty
times. The goal was to investigate, with a bottom-
up approach, to what extent the use of certain words
characterizes hedge classes in tutoring. In Section
5 we examine the overlap between these words and
those a priori identified by the rules.
Part-of-speech (POS): Hedge classes seem to be
associated with different syntactic patterns: for ex-
ample, subjectivizers most often contain a personal
pronoun followed by a verb, as in "I guess", "I
believe", "I think". We therefore considered the
number of occurrences of POS-Tag n-grams (n=1,
2, 3) as features. We used the spaCy POS-tagger
and considered POS unigrams, bigrams and tri-
grams that occur at least 10 times in the training
dataset.
LIWC: Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2015) is standard soft-
ware for extracting the count of words belonging
to specific psycho-social categories (e.g., emotions,
religion). It has been successfully used in the de-
tection of conversational strategies (Zhao et al.,
2016a). We therefore count the number of occur-
rences of all the 73 categories from LIWC.
Tutoring moves (TM): Intelligent tutoring sys-
tems rely on specific tutoring moves to success-
fully convey content (as do human tutors). We
therefore looked at the link between the tutoring
moves, as annotated in Madaio et al. (2017), and
hedges. For tutors, these moves are (1) instruc-
tional directives and suggestions, (2) feedback, and
(3) affirmations, mostly explicit reflections on their
partners’comprehension, while for tutees, they are
(1) questions, (2) feedbacks, and (3) affirmations,



Class Definition Example

Subjectivizers Words that reduce intensity or certainty “So then I would divide by two.”
Apologizers Apologies used to soften direct speech acts “Oh sorry six b.”

Propositional hedges Qualifying words to reduce intensity or certainty of utterances “It’s actually eight.”
Extenders Words used to indicate uncertainty by referring to vague categories “It’ll be the number x or whatever variable you have.”

Table 1: Definition of the classes

Prop. hedges Apologizers Subjectivizers Not hedged Total

1210 128 626 21192 23156

Table 2: Distribution of the classes

Features name Automatic extraction Vector size

Rule-based label Yes 4
Unigram Yes ~250
Bigram Yes ~250

POS Yes ~1200
LIWC Yes 73

Nonverbal No 24
Tutoring moves No 6

Total ~1800

Table 3: List of automatically extracted and manually
annotated features with their size.

mostly tentative answers.

Nonverbal and paraverbal behaviors: As in Goel
et al. (2019), we included the nonverbal and par-
averbal behaviors that are related to hedges. Specif-
ically, we consider laughter and smiles, that have
been shown to be effective methods of mitiga-
tion (Warner-Garcia, 2014), cut-offs indicating self-
repairs, fillers like "Um", gaze shifts (annotated as
’Gaze at Partner’, ’Gaze at the Math Worksheet’,
and ’Gaze elsewhere’), and head nods. Each fea-
ture was present twice in the feature vector, one
time for each interlocutor. Inter-rater reliability
for nonverbal behavior was 0.89 (as measured by
Krippendorff’s alpha) for eye gaze, 0.75 for smile
count, 0.64 for smile duration and 0.99 for head
nod. Laughter is also reported in the transcript at
the word level. We separate the tutor’s behaviors
from those of the tutee. The collection process for
these behaviors is detailed further in Zhao et al.
(2016b).

The clause-level feature vector was normalized by
the length of the clause (except for the rule-based
label). This length was also added as a feature.
Table 3 presents an overview of the final feature
vector.

4.3 Classification models

The classification models used are presented here
according to their level of integration of external
linguistic knowledge.
Rule-based model: On the basis of the annotation
manual used to construct the dataset from Madaio
et al. (2017), and with descriptions of hedges from
Rowland (2007), Fraser (2010) and Brown and
Levinson (1987), we constructed a rule-based clas-
sifier that matches regular expressions indicative
of hedges. The rules are detailed in Table 7 in the
Appendix.
LGBM: Since hedges are often characterized by
explicit lexical markers, we tested the assumption
that a machine learning model with a knowledge-
driven representation for clauses could compete
with a BERT model in performance, while being
much more interpretable. We relied on LightGBM,
an ensemble of decision trees trained with gradi-
ent boosting (Ke et al., 2017). This model was
selected because of its performance with small
training datasets and because it can ignore unin-
formative features, but also for its training speed
compared to alternative implementations of gradi-
ent boosting methods.
Multi-layer perceptron (MLP): As a simple base-
line, we built a multi-layer perceptron using three
sets of features: a pre-trained contextual repre-
sentation of the clause (SentBERT; Reimers and
Gurevych (2019)) ; the concatenation of this con-
textual representation of the clause and a rule-based
label (not relying on the previous clauses) ; and
finally the concatenation of all the features men-
tioned in section 4.2, without the contextualized
representation.
LSTM over a sequence of clauses: Since
we are working with conversational data, we
also wanted to test whether taking into ac-
count the previous clauses helps to detect
the type of hedge class in the next clause.
Formally, we want to infer yi using yi =
maxy∈Classes P (y|X(ui), X(ui−1), ..., X(ui−K))
, where K is the number of previous clauses
that the model will take into account. The



MLP model presented above infers yi using
yi = maxy∈Classes P (y|X(ui)), therefore a
difference of performance between the two models
would be a sign that using information from the
previous clauses could help to detect the hedged
formulation in the current clause. We tested a
LSTM model with the same representations for
clauses as for the MLP model.
CNN with attention: Goel et al. (2019) estab-
lished their best performance on hedge detec-
tion using a CNN model with additive attention
over word (and not clause) embeddings. Con-
trary to the MLP and LSTM models mentioned
above, this model tries to infer yi using yi =
maxy∈Classes P (y|g(w0), g(w1), ..., g(wL)), with
L representing the maximum clause length we al-
low, and g representing a function that turns the
word wj , j ∈ [0, L] into a vector representation
(for more details, please see Adel and Schütze
(2017)).
BERT: To benefit from deep semantic and con-
textual representations of the utterances, we also
fine-tuned BERT (Devlin et al., 2019) on our clas-
sification task. BERT is a pre-trained Transformers
encoder (Vaswani et al., 2017) that has significantly
improved the state of the art on a number of NLP
tasks, including sentiment analysis. It produces a
contextual representation of each word in a sen-
tence, making it capable of disambiguating the
meaning of words like "think" or "just" that are
representative of certain classes of hedges. BERT,
however, is notably hard to interpret.

4.4 Analysis tools

Looking at which features improve the perfor-
mance of our classification models tells us whether
these features are informative or not, but does not
explain how these features are used by the mod-
els to make a given prediction. We therefore pro-
duced a complementary analysis using an inter-
pretability tool. As demonstrated by (Lundberg
and Lee, 2017), LightGBM internal feature impor-
tance scores are inconsistent with both the model
behavior and human intuition, so we instead used
a model-agnostic tool. SHAP (Lundberg and Lee,
2017) assigns to each feature an importance value
(called Shapley values) for a particular prediction
depending on the extent of its contribution (a de-
tailed introduction to Shapley values and SHAP
can be found in Molnar (2020)). SHAP is a model-
agnostic framework, therefore the values associ-

ated with a set of features can be compared across
models. It should be noted that SHAP produces
explanations on a case-by-case basis, therefore it
can both provide local and global explanations. For
the Gradient Boosting model, we use an adapted
version of SHAP (Lundberg et al., 2018), called
TreeSHAP.

5 Experiments and results

5.1 Experimental setting

To detect the best set of features, we used Light-
GBM and proceeded incrementally, by adding the
group of features we thought to be most likely asso-
ciated with hedges. We did not consider the risk of
relying on a sub-optimal set of features through this
procedure because of the strong ability of Light-
GBM to ignore uninformative features. We use this
incremental approach as a way to test our intuition
about the performativity of groups of features (i.e.
does adding a feature improve the performance of
the model) with regard to the task of classifica-
tion. To compare our models, we trained them on
the 4-class task, and looked at the average of the
weighted F1-scores for the three hedge classes (i.e.
how well the models infer minority classes) that we
report here as "3-classes", and at the average of the
weighted F1-scores for the 4 classes, that we report
as "4-classes". Details of the hyperparameters and
experimental settings are provided in Appendix A.

5.2 Model comparison and feature analysis

Overall results: Table 4 presents the results ob-
tained by the 6 models presented in Section 4.3
for the multi-class problem. Best performance (F1-
score of 79.0) is obtained with LightGBM lever-
aging almost all the features. In the appendix (see
Table 8 and Table 9) we indicate the confidence
intervals to represent the significance of the differ-
ences between the models.
First, and perhaps surprisingly, we notice that
the use of "Knowledge-Driven" features based on
rules built from linguistic knowledge of hedges
in the LightGBM model outperforms the use of
pre-trained embeddings within a fine-tuned BERT
model (79.0 vs. 70.6), and in the neural baseline
from (Goel et al., 2019) (79.0 vs 64.5).
The low scores obtained by the LGBM, LSTM
and MLP models with pre-trained sentence em-
beddings versus Knowledge-Driven features might
signal that the word patterns characterizing hedges
are not salient in these representations (i.e. the



Models KD Feat. (KDF) Pre-Trained Emb. (PTE) KDF + PTE

Rule-based (3-classes) 67.6 ∅ ∅
MLP (3-classes) 68.5 (1.6) 35.8 (3.1) 64.8 (1.1)

Attention-CNN (3-classes) ∅ 64.5 (3.0) ∅
LSTM (3-classes) 65.1 (5.7) 39.8 (8.0) 65.2 (5.1)
BERT (3-classes) ∅ 70.6 (2.3) ∅
LGBM (3-classes) 79.0 (1.3) 35.0 (2.2) 70.1 (1.4)

Rule-based (4-classes) 94.7 ∅ ∅
MLP (4-classes) 94.8 (0.3) 89.7 (0.4) 93.9 (0.4)

Attention-CNN (4-classes) ∅ 94.4 (0.2) ∅
LSTM (4-classes) 93.9 (1.4) 89.1 (1.4) 94.1 (1.2)
BERT (4-classes) ∅ 94.9 (0.4) ∅
LGBM (4-classes) 96.7 (0.2) 91.0 (0.2) 95.4 (0.2)

Table 4: Averaged weighted F1-scores (and standard
deviation) for the three minority classes and for the 4
classes, for all models. "KD" stands for "Knowledge-
Driven", meaning that the features are derived from
lexicon, n-gram models and annotations.

distance between "I think you should add 5." and
"You should add 5." is short.). KD Features seem
to provide a better separability of the classes. The
combination of KD features and Pre-trained em-
beddings does not significantly improve the perfor-
mance of the models compared to the KD Features
only, which suggests that the information from the
Pre-trained embeddings is redundant with the one
from the KD Features. This result may be due to
the high dimensionality of the input vector (868
with PCA on the KD Features; 2500 otherwise).
A second finding is that the use of gradient boost-
ing models on top of rule-based classifiers better
models the hedge classes. The other machine learn-
ing models did not prove to be as effective, except
for BERT.
Feature analysis using LightGBM: Using the best
performing model, Table 5 shows the role of each
feature set in the prediction task. The significance
of the differences is shown in Table 10 and Table 11.
Compared to the rule-based model, the introduction
of n-grams significantly improved the performance
of our classifier, suggesting that some lexical and
syntactic information describing the hedge classes
was not present in the rule-based model. Looking at
Table 5, we do not observe significant differences
between the LGBM model using only the label rule
based + (1-grams and 2-grams) and the models in-
corporating more features. To our surprise, neither
the tutoring moves nor the nonverbal features sig-
nificantly improved the performance of the model.
The 2 features were included to index the specific
peer tutoring context of these hedges, so this indi-
cates that in future work we might wish to apply the
current model to another context of use to see if this
model of hedges is more generally applicable than
we originally thought. By combining this result

with the increased performance of the model us-
ing Knowledge-Driven (i.e. explicit) features com-
pared to pre-trained embeddings, it would seem
that hedges are above all a lexical phenomenon (i.e.
produced by specific lexical elements).

5.3 In-depth analysis of the informative
features

We trained the SHAP explanation models on Light-
GBM with all features. The most informative fea-
tures (in absolute value) for each class are shown in
Table 6, and the plots by class are presented in the
Appendix. The most important features seem to be
the rule-based labels, which appear in at least the
fourth position for three classes (see Table 6), and
in the first position for Propositional Hedges and
Not hedged classes. Surprisingly, the Rule-Based
label does not appear in the top 20 features for
Apologizers. However, given that the class rarely
appears in the data, the rules seldom activate, so
the feature may simply be informative for a very
small number of clauses. Unigrams (Oh, Sorry,
just, Would, and I) are also present in the 5 top-
ranked features. This confirms the findings men-
tioned in related work for the characterization of
the different hedge classes (just with Propositional
Hedges, sorry with Apologizer, I with Subjectiviz-
ers). The presence of Oh also has high importance
for the characterization of Apologizer (n=2), as
illustrated in examples such as "Oh sorry, that’s
nine.". We note that the occurrences of "Oh sorry"
as a stand-alone clause were excluded by our rule-
based model because they do not correspond to an
apologizer (they cannot mitigate the content of a
proposition if there is no proposition associated).
This example illustrates the interest of a machine
learning model approach to disambiguate the func-
tion of conventional non-propositional phrases like
"Oh sorry".
In addition, SHAP highlights the importance of
novel features whose function was not identified in
the hedges literature: (i) what LIWC classifies as
informal words but that are mostly interjections
like ah and oh are strongly associated with Apol-
ogizer, as are disfluencies (n=12); (ii) the use of
POS tags seems to be very relevant for charac-
terizing the different classes (2-gram of POS tag
features3 occur in the top-ranked features of all the

3Note that there is strong redundancy between some fea-
tures of LIWC and the spaCy POS tagger that both produce
a "Pronoun" category, using a lexicon in the first case, and a
neural inference in the second.



Models Label RB + 1-gram and 2-gram + POS + LIWC + TM + Nonverbal

3-classes 68.8 (0.8) 78.2 (1.6) 78.1 (1.3) 79.0 (1.3) 78.5 (2.4) 78.7 (1.8)

4-classes 95.0 (0.2) 96.5 (0.3) 96.5 (0.2) 96.7 (0.2) 96.6 (0.4) 96.7 (0.3)

Table 5: Averaged weighted F1-scores for the three classes of hedges and the four classes, with an additive
integration of KDF features in the LightGBM model. The standard deviation is computed across five folds.

Rank Apologizer Subjectivizers Prop. Hedges Not hedged

1 Function words (LIWC) "I" Class label Class label
2 "Oh" (LIWC) "Yeah" "Would" "Would"
3 "Sorry" Noun (POS) "Just" "Yeah"
4 Affect (LIWC) Class label Function word (LIWC) Noun (POS)
5 Clause length Cognitive process (LIWC) Netspeak (LIWC) Cognitive process (LIWC)

Table 6: Most important clause-level features for LightGBM according to the SHAP analysis.

classes (see Figures in the Appendix). It means that
there are some recurring syntactic patterns in each
class; (iii) Regarding the utterance size, a clause
shorter than the mean is weakly associated with
directness (n=17) while a longer clause suggests
that it contains a Subjectivizer (n=6). Apologizers
are characterized by a mean clause length (n=5),
with few variations from it; (iv) Tutoring moves
are not strong predictors of any classes: "Affirma-
tion from tutor" is the only feature appearing as
a predictor of Propositional hedges (n=20). This
is consistent with the feature analysis in Table 5,
suggesting that tutoring moves do not significantly
improve the performance of the classifier; (v) Non-
verbal behaviors do not appear as important fea-
tures for the classification. This is coherent with
results from (Goel et al., 2019). Note that prosody
might play a role in detecting instructions that trail
off, but, as described, paraverbal features were not
available; (vi) Would plays an important role in the
production of hedges, as it is strongly associated
to Propositional hedges (n=2). It is interesting to
note that, when designing the rule-based classifier,
we saw it decrease in performance when we started
to include would in our regular expression patterns,
probably because the form is hard to disambiguate
for a deterministic system.

While exploring the Shapley values associated to
each clause, we observed that features like tutoring
moves are extremely informative for a very small
number of clauses (therefore not significantly influ-
encing the overall performance of the prediction),
and more or less not informative for the rest. Infer-
ring the global importance of a feature as a mean
across the shapley values in the dataset may not
be the only way to explore the behavior of gradi-

ent boosting methods. It might be more useful to
cluster clauses based on the importance that SHAP
gives to that feature in its classification, as this
could help discover sub-classes of hedges that are
differentiated from the rest by their interaction with
a specific feature (in the way that some Apologiz-
ers are characterized by an "oh"). We also note
that the explanation model is sensitive to spuri-
ous correlations in the dataset, caused by the small
representation of some class: for example, "nine"
(n=7) and "four" (n=20) are positive predictors of
Apologizers.

6 Conclusion and future work

Through our classification performance experi-
ments, we showed that it is possible to use ma-
chine learning methods to diminish the ambigu-
ity of hedges, and that the hybrid approach of us-
ing rule-based label features derived from social
science (including linguistics) literature within a
machine learning model helped significantly to in-
crease the model’s performance. Nonverbal behav-
iors and tutoring moves did not provide information
at the sentence level; both the performance of the
model and the feature contribution analysis sug-
gested that their impact on the model output was
not strong. This is consistent with results from Goel
et al. (2019). However, in future work we would
like to investigate the potential of multimodal pat-
terns when we are able to better model sequentiality
(e.g., negative feedback followed by a smile). Re-
garding the SHAP analysis, most of the features
that are considered as important are coherent with
the definition of the classes (I for subjectivizers,
sorry for apologizers, just for propositional hedges).
However, we discovered that features like utterance



size can also serve as indicators of certain classes
of hedges. A limitation of SHAP is that it makes a
feature independence assumption, which prompts
the explanatory model to underestimate the impor-
tance of redundant features (like pronouns in our
work). In the future we will explore explanatory
models capable of taking into account the corre-
lation between features in the dataset like SAGE
(Covert et al., 2020), but suited for very imbal-
anced datasets. In the domain of peer-tutoring, we
would like to be able to further test the link be-
tween hedges and rapport, and the link between
hedges and learning gains in the subject being tu-
tored. As noted above, this kind of study requires
a fine-grained control of the language produced
by one of the interlocutors, which is difficult to
achieve in a human-human experience.
We note that the hedge classifier can be used not
just to classify, but also to work towards improving
the generation of hedges for tutor agents. In future
work we will explore using the classifier to re-rank
generation outputs, taking advantage of the recur-
ring syntactic patterns (see (ii) in Section 5.3) to
improve the generation process of hedges, and re-
generating clauses that don’t contain one of these
syntactic patterns.
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A Additional information on the
experimental settings

We used PyTorch (Paszke et al., 2019) to imple-
ment the neural models. For each set of features,
hyperparameters were selected using Optuna (Ak-
iba, 2019), a parameter search framework. We re-
implemented the Attention-CNN with Glove (Pen-
nington et al., 2014) 300-D words embeddings as
the vector representation. For each models, the
results are cross-validated using 5 folds (we chose
5 instead of 10 to avoid having folds with too few
samples per class). We corrected the loss function
for class imbalance to force the model to adapt
more to the less frequent classes. The strength of
this correction depended on the model, and was
selected because it provided a satisfying compro-
mise between favoring recall and precision in the
classification results of that model. For LightGBM,
a "square root of the square root of the inverse
class proportion" correction was selected. Neu-
ral models were trained using AdamW as an op-
timizer (Loshchilov and Hutter, 2018), and used
a reduced feature vector, obtained with the ap-
plication of PCA (dinit = 1800; d = 100 ; 99.8
% of the information is conserved). No signifi-
cant performance differences were observed be-
tween the original vector and the reduced vector
for training the models. To compute the SHAP
values mentioned in the paper, we kept one split
to perform the 5-split of the dataset, and leave 1
split to validate and early stop the model, in or-
der to avoid overfitting. A complete configura-
tion of hyperparameters used for each model is re-
ported in the GitHub repository with the code of the
paper: https://github.com/YannRaphalen/Hedges-
Detection.
The BERT model was fine-tuned on a Nvidia
Quadro RTX 8000 GPU.
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Class Rule (regexp)

Subj. (?!what).*(i|we) ?(don’t|didn’t|did)? ?(not)?
(guess|guessed|thought|think|believe|believed|suppose|supposed)

?(whether|if|is|that|it|this)?.*
Subj. .*(i|i’m|we) ?(was|am|wasn’t)? ?(not)? (sure|certain).*
Subj. .*(i feel like you).*
Subj. .*(you (might|may) (believe|think)).*
Subj. .*(according to|presumably).*
Subj. .*(i|you|we) have to (check|look|verify).*
Subj. .*(if i’m not wrong|if i’m right|if that’s true).*
Subj. .*(unless i).*
Apol. .*(i’m|i|we’re) (am|are)? ?(apologize|sorry).*
Apol. (?!.*(be|been|was) like excuse me)((excuse me|sorry)[w ,’]+|[w ,’]+(excuse me|sorry))
Prop. .*(just|a little|maybe|actually|sort of|kind of|pretty

much|somewhat|exactly|almost|little bit|quite|
regular|regularly|actually|almost|as it were|basically|

probably|can be view as|crypto-|especially|essentially|
exceptionally|for the most part|in a manner of speaking|

in a real sense|in a sense|in a way|largely|literally|
loosely speaking|kinda|more or less|mostly|often|

on the tall side|par excellence|particularly|
pretty much|principally|pseudo-|quintessentially|

relatively|roughly|so to say|strictly speaking|
technically|typically|virtually|approximately|

something between|essentially|only).*
Prop. .*(i|i’m|you|it’s) (am|are) (apparently|surely)[ ,]?.*
Prop. .*(it) (looks|seems|appears)[ ,]?.*", ".* (or|and) (that|something|stuff|so forth)

Table 7: Regexp rules used for the classifier.

Models RB MLP (KDF) MLP (PTE) MLP (K+P) CNN (PTE) LSTM (KDF) LSTM(PTE) LSTM (K+P) BERT (PTE) LGB (KDF) LGB (PTE) LGB (K+P)

Rule-based No Yes No No No Yes No No Yes Yes No
MLP (KDF) No Yes No No No Yes No No Yes Yes No
MLP (PTE) Yes Yes Yes Yes Yes No Yes Yes Yes No Yes

MLP (KDF + PTE) No No Yes No No Yes No Yes Yes Yes Yes
Attention-CNN (PTE) No No Yes No No Yes No Yes Yes Yes Yes

LSTM (KDF) No No Yes No No Yes No Yes Yes Yes Yes
LSTM(PTE) Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes

LSTM (KDF + PTE) No No Yes No No No Yes Yes Yes Yes Yes
BERT (PTE) No No Yes Yes Yes Yes Yes Yes Yes Yes No

LGBM (KDF) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
LGBM (PTE) Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes

LGBM (KDF + PTE) No No Yes Yes Yes Yes Yes Yes No Yes Yes

Table 8: Significance table for the 3-classes part of Table 4. "Yes" means that the difference is statistically significant.

Models RB MLP (KDF) MLP (PTE) MLP (K+P) CNN (PTE) LSTM (KDF) LSTM(PTE) LSTM (K+P) BERT (PTE) LGB (KDF) LGB (PTE) LGB (K+P)

Rule-based No Yes Yes No Yes Yes No No Yes Yes Yes
MLP (KDF) No Yes Yes No Yes Yes Yes No Yes Yes No
MLP (PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

MLP (KDF + PTE) Yes Yes Yes No No Yes No Yes Yes Yes Yes
Attention-CNN (PTE) No No Yes No No Yes No No Yes Yes Yes

LSTM (KDF) Yes Yes Yes No No Yes No No Yes Yes Yes
LSTM(PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

LSTM (KDF + PTE) Yes Yes Yes No No No Yes Yes Yes Yes Yes
BERT (PTE) No No Yes Yes No Yes Yes Yes Yes Yes No

LGBM (KDF) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
LGBM (PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

LGBM (KDF + PTE) Yes No Yes Yes Yes Yes Yes Yes No Yes Yes

Table 9: Significance table for the 4-classes part of Table 4. "Yes" means that the difference is statistically significant.

Models Label RB + 1-gram and 2-gram + POS + LIWC + TM + Nonverbal

Label RB Yes Yes Yes Yes Yes
+ 1-gram and 2-gram Yes No No No No

+ POS Yes No No No No
+ LIWC Yes No No No No

+ TM Yes No No No No
+ Nonverbal Yes No No No No

Table 10: Significance table for the 3-classes part of Table 5. "Yes" means that the difference is statistically
significant.



Figure 2: Absolute averaged feature contribution, as indicated by SHAP. The longer the bar is for one color, the
more the feature is associated with the class represented by that color.

Figure 3: Averaged contribution of features to the detection of the "Not indirect" class, as indicated by SHAP. Each
dot corresponds to a classified clause. A red dot indicates that the feature is present in the clause, while a blue
dot indicates that the feature is absent. The farther on the right the dot is, the more the feature contributed to its
classification as a hedge.



Figure 4: Averaged contribution of features to the detection of "Apologizers", as indicated by SHAP.

Figure 5: Averaged contribution of features to the detection of "Propositional hedges", as indicated by SHAP.



Figure 6: Averaged contribution of features to the detection of "Subjectivizers", as indicated by SHAP.

Models Label RB + 1-gram and 2-gram + POS + LIWC + TM + Nonverbal

Label RB Yes Yes Yes Yes Yes
+ 1-gram and 2-gram Yes No No No No

+ POS Yes No No No No
+ LIWC Yes No No No No

+ TM Yes No No No No
+ Nonverbal Yes No No No No

Table 11: Significance table for the 4-classes part of Table 5. "Yes" means that the difference is statistically
significant.


