Socially-Conditioned Task Reasoning for a Virtual Tutoring Agent

Extended Abstract

Zian Zhao
Shanghai Jiao Tong University
Shanghai, SH
zi.an.zhao@sjtu.edu.cn

Michael Madaio
Carnegie Mellon University
Pittsburgh, PA
mmadaio@andrew.cmu.edu

Florian Pecune
Carnegie Mellon University
Pittsburgh, PA
fpecune@andrew.cmu.edu

Yoichi Matsuyama
Carnegie Mellon University
Pittsburgh, PA
yoichim@andrew.cmu.edu

Justine Cassell
Carnegie Mellon University
Pittsburgh, PA
justine@cs.cmu.edu

ABSTRACT

Virtual agents have been shown to be more effective when incorporating social factors such as trust into task action selection. However, there has been less work on how virtual tutoring agents can incorporate social factors into pedagogical action selection. We propose and evaluate how a socially-conditioned task reasoner for a virtual pedagogical agent can incorporate both task and social factors into task reasoning. Our work contributes to the autonomous agent community by providing further evidence that incorporating information about dyadic social factors (e.g., rapport) can be beneficial for agents’ task reasoning in the case of a tutoring agent.

KEYWORDS

Socially-aware; pedagogical agent; rapport; RL-LSTM

2 MODEL CONSTRUCTION

The task of a socially-conditioned pedagogical reasoner is as follows: at each time step, the pedagogical reasoner will choose the optimal tutoring strategy from a set of available strategies to maximize tutees’ learning gains over time (normalized gain between pre and post-test [11]), given data of (a) tutees’ previous problem-solving performance; (b) the tutees’ and tutoring agent’s prior labeled utterances; and (c) the rapport level between tutee and agent [8].

We use a peer tutoring dialogue corpus (described in [9]) of 22 pairs of 12-15 year old students tutoring each other in algebra, for a total of 30 hours of multimodal data. The transcripts were annotated for tutoring and learning strategies (TS) (e.g., propose step/answer, ask for help, etc) and two social conversational strategies (SS) (e.g., self-disclosure, praise, etc), described in [8, 9]). Each tutoring session was scored for the problems solved during the session and the normalized learning gain from pre-test to post-test (as in [11]). To find the rapport level for each 30-second “thin-slice” of our corpus, we used a crowd-sourcing approach, described in [8, 17].

To combine social factors (rapport and SS) and task factors (learning performance and TS) into pedagogical reasoning, we model the process into a reinforcement learning problem as follows: States are defined as the TS or SS the tutee has just used (e.g. propose step), concatenated with rapport level, if included. Actions are the set of TS available for the tutoring agent to choose from, used to tutor the tutees in algebraic problem-solving (e.g. provide hint, feedback,
prompt for step). The Reward function assigns rewards according to learners’ performance (1 for problem solved, 10 for positive, and -10 for negative learning gains at the end of the session). The Environment is modeled by a Markov Decision Process (MDP) with Discount coefficient set to 0.98 to ensure the tutoring sessions’ duration is realistic. We will refer to this model as an MDP reasoner.

To investigate RQ2, we replace the Environment with a long-term memory (LSTM) to model possible long-term dependencies in pedagogical reasoning. We refer to this as an RL-LSTM reasoner. In order to find the optimal policy, we train the network to approximate the Q value, following the method in [2]. Our architecture contains a layer of 200 LSTM units, followed by a single hidden layer of 100 hidden units, with the input layer corresponding to the dimensions of the concatenated input vector. The input of the model is a concatenated vector:

\[<S_{t-1}, A_{t-1}, S_t, R_{pt} > \]

which is the tutee’s action \((S_{t-1})\) and agent’s action \((A_{t-1})\) at the previous time step; the current tutee’s action \((S_t)\); and the current rapport level (e.g. low, medium, high) \((R_{pt})\); each one-hot encoded. The output layer is the same length as the set of available task strategy actions for the virtual agent. The output layer is activated by \(tanh\) function and other layers are activated by \(ReLU\) function. At each time step, the network selects the action with the largest expected reward to be the agent’s next pedagogical action. To compare performance across multiple models (i.e. MDP and RL-LSTM), we evaluate the models by comparing them to the ground truth of the human-human tutoring data in our corpus. Following [15], we compute the similarity of the learned policy to the cases in the corpus that result in larger learning gains, expressed as follows:

\[
Sim(\pi^*_ij, \pi_i) = 1 - \frac{Lev(\pi^*_ij, \pi_i)}{m}
\]

where \(m\) is number of tutoring moves and \(Lev(\pi^*_ij, \pi_i)\) Levenshtein distance between learned policy \(\pi^*_ij\) and observed policy \(\pi_i\).

3 EXPERIMENT

To investigate our research questions, we study: (1) the effect of incorporating social factors into the task reasoning models on the expected reward for student learning; and (2) whether using a longer memory of the utterances (task and social) and rapport is beneficial to task reasoning. All \(p\)-values are adjusted using the post-hoc Bonferroni correction. For RQ1, we investigate two types of social factors involved in the corpus: the thin-slice dyadic rapport and two social conversational strategies previously shown to contribute to rapport-building: self-disclosure and praise. To study the effect of these factors, we construct four MDP reasoners to capture each combination of the different features.

We can see in Fig.1 that the model with TS, SS, and Rapport receives the highest expected reward \((m=6.61, \text{std}=6.76)\). Specifically, incorporating rapport as a single additional input factor to task strategies significantly improves \((t=56.04, p<.001)\) the overall performance of the MDP \((m=6.34, \text{std}=6.81)\) over an MDP with TS only \((m=3.59, \text{std}=8.06)\), while the model that includes both TS, Rapport, and social strategies (SS) performs the best \((t=5.43, p<.001)\). This result suggests that including social factors improves virtual agents’ pedagogical task reasoning performance.

Figure 1: Effect of Social Factors on Task Reasoning in MDP

For RQ2, we compared RL-LSTM to MDP to evaluate the impact of memory on model performance. Based on the results from RQ1, we use TS, SS, and Rapport for both models. We set 20% of data as the test set and the remaining 80% as training. For test set \(a_i\), we calculate the similarity score \(Sim(\pi^*_ij, \pi_i)\) and the learning gain \(R_i\) of test case \(a_i\), as in Section 2. For a successful pedagogical policy, we expect \(R_i\) to be positively correlated to \(Sim(\pi^*_ij, \pi_i)\). Overall, policies generated by the RL-LSTM have a significant, greater similarity with effective tutoring sessions \((\rho=0.591)\) than those from the MDP \((\rho=0.136)\). This result follows prior work [6] that using information from the tutoring and social interaction history (rather than current information alone) will improve task success.

4 DISCUSSION

In this work, we study the role of social factors in task reasoning by incorporating rapport and social conversational strategies into the input of a pedagogical reasoner, using reinforcement learning. Our results show that social factors have a strong positive effect on a pedagogical task reasoner’s performance. More precisely, using as input the learners’ social conversational strategies along with the rapport between tutee and agent helps the reasoner make better tutor decisions, increasing students’ learning gain in our models. We also found a memory-based method (RL-LSTM) outperforms a memoryless method (MDP), showing that a tutoring agent that makes its decisions on both the current and previous observations is more effective than one that uses the current information alone.

However, this work has some limitations, namely lacking an evaluation in a deployed system. Further, tutors often teach differently according to their individual tutees, while our model presents a general approach to action selection, given the rapport level. A personalized model may thus be more effective. For future studies, given the flexibility of RL-LSTM models, we also intend to incorporate more features, such as nonverbal and acoustic features, and study their effect on pedagogical reasoning or broader applications for socially-conditioned task reasoning in virtual agents.

We intend for this article to contribute to the autonomous agent community for its study on incorporating social factors into task reasoning, and intend for it to contribute to the design of virtual agents that can interact with people on more human terms.

ACKNOWLEDGMENTS

The work is supported by NSF Award No.1523162, IES Grant R305B150008 to CMU, and the IT R&D program of MSIP/IITP [2017-0-00255].
REFERENCES

