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Abstract. In this paper, we describe an exploratory study to develop a
model of visual attention that could aid automatic interpretation of ex-
ophors in situated dialog. The model is intended to support the reference
resolution needs of embodied conversational agents, such as graphical
avatars and robotic collaborators. The model tracks the attentional state
of one dialog participant as it is represented by his visual input stream,
taking into account the recency, exposure time, and visual distinctness
of each viewed item. The model correctly predicts the correct referent
of 52% of referring expressions produced by speakers in human-human
dialog while they were collaborating on a task in a virtual world. This
accuracy is comparable with reference resolution based on calculating
linguistic salience for the same data.

1 Introduction

A challenging goal in computational linguistics is understanding all of the ways
context modulates the meaning of linguistic forms. One contextual effect that
has been observed across multiple experimental disciplines is the use of ambigu-
ous referring expressions for entities that are salient in the context. Speakers use
underspecified nominal expressions, especially pronouns such as this and he but
also common noun phrases (NP) such as the button, freely in discourse, relying on
the addressee’s ability to understand which button or person is being referred to.
This preference for certain entities, given a prior context, will be called salience
in this paper. Salience corresponds to a prediction or expectation that a certain
entity will be the topic of an utterance. Estimating the relative salience of each
entity in the universe of discourse is an important task in computational models
of referring behavior - both in producing felicitous noun phrases and also in in-
terpreting connected discourse. The long-term objective of our research program
is to create robust, accurate algorithms for reference interpretation in automated
agents. This task is impossible without a firm understanding of contextual effects
on referring behavior.

It has been well-established in the computational linguistics literature that
discourse history can be interrogated to estimate the salience of entities in a
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sentence one is trying to interpret. However, recent technology improvements
create opportunities for human-computer conversations in which several contex-
tual factors in addition to the discourse history are in play at the same time,
each impacting entity salience in different ways. The goal of our project is to
create conversational software agents that can carry on a situated conversation
with a human partner. For the purposes of this paper, situated language will be
defined as language having these properties:

Immersion. The conversation takes place within a 3D setting that is percep-
tually available to the conversational partners. The partners can speak to
each other face to face within the setting.

Mobility. Both conversational partners are at liberty to move about in the
world, independently of each other, to gather information or change their
perceptual perspective of the world.

These characteristics distinguish situated language from other interaction
paradigms. The bulk of reference processing algorithms in computational lin-
guistics have been developed using data collected in traditional experimen-
tal settings where conversational partners are explicitly prevented from ex-
ploiting extra-linguistic contextual clues, such as gesture and gaze [13]. How-
ever, in the current study, we examine situated language between two human
partners, using new data generated in our lab. This allows us to investigate
the interplay between the discourse context and the conversational setting and
its effect on the interpretation of referring expressions in a visually-rich
domain.

The primary focus of the present work is to develop a model of visual at-
tention that can be used to interpret exophors, references to items in the dis-
course setting. Similar to the way that an anaphor constitutes a repeated men-
tion of an item introduced into the context by the linguistic history, an ex-
ophor is a repeated mention of an item already introduced into the context
by the physical world, in other words, a cross-modal coreference. Our hypoth-
esis is that the world that is visually perceptible to the conversational part-
ners will be likely to shape the content of their discussion, especially when
they are performing a task involving objects in that world. Moreover, a likely
source of denotations for exophors are items that the speaker’s attention is di-
rected toward as the utterance is produced. Given these two factors influencing
the dialog, our aim is to test a method of tracking one speaker’s view of the
world over the course of a dialog, and use that information as input in a ref-
erence resolution algorithm to interpret ambiguous referring expressions. Our
eventual goal is to construct a model that fuses attentional information pro-
vided in the visual channel with that provided by the discourse history. In the
present work, we perform pencil-and-paper analyses and offline simulations of
our model, as a first step in developing the algorithms that will eventually be
implemented.
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2 Motivation and Background

2.1 Overview

Our work is motivated by the goal of building automated agents or interactive
characters that cohabit a virtual space with a human partner. Such agents will
be able to discuss the world they are in, as well as collaborate, reason, plan, and
perceive the virtual world. In order to design this type of agent, we first need to
learn how human beings behave in similar environments.

The data used to inform algorithm development in this study was collected
by placing pairs of human partners in a first-person graphical world, rendered
by the QuakeII game engine1. In the virtual world, the partners collaborate on
a treasure hunt task. One person in each pair of players, “the leader”, was given
the list of tasks. The other player, “the follower”, had no prior knowledge of
these tasks. This setting forced the players to converse in order to solve their
task. The partners communicated through headset-mounted microphones, and
an audio recording of their dialog was collected and transcribed. In addition,
each player’s movement and activity in the virtual world was recorded to video
tape. The QuakeII game engine allows the two partners to move about in the
world independently and manipulate objects. As he moves about, each player
sees a first-person view of the virtual world. We trapped separate recordings
from each person’s viewpoint.

It is obvious that understanding natural language is important in order to
collaborate in this domain, and that the two partners discuss not only items
that they see but also items that have been discussed or seen in the past. There
is evidence in the literature showing that visual context influences how people
organize and interpret the meaning of spoken language [25, 21]. Figure 1 shows
a sample dialog fragment from our study2, which contains instances of both
cross-modal and linguistic coreference over a chain of references to the helmet.
Before utterance 1, speaker F sees the helmet in the room. The expression it in
utterance 1 denotes the physical helmet in the world3. After this mention, the
helmet is repeated several times. This discourse fragment also shows the high
concentration of referring expressions in this domain. The partners are unlikely
to successfully complete their task without correctly interpreting these phrases.

F: I see it {vn:AH} I see the helmet
L: yeah
F: yeah {vn:doo} {vn:ack} and to pick it up I do control right
L: yes

Fig. 1. A sample dialog demonstrating both linguistic and cross-modal coreference

1 www.id.com
2 The notation {vn:} signifies non-word vocal noise.
3 Forty-six utterances prior to this point in the dialog, the partners had discussed

finding the helmet, so the speaker’s use of it in this example is partially anaphoric.
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The visually-perceived Quake world is not only the source of semantics for the
conversational partners, but also impacts their focus of attention. For example,
when the partners walk through a door and suddenly have a view of a set of
new objects in a room, their attention is fixated on the new objects they have
just discovered. Therefore, our computational model must attempt to calculate
what items of interest might be discussed next, given a 2D plane of pixels which
represents the field of view of one partner. There are a variety of issues that must
be addressed in utilizing this visual information as input to language processing.

Video Segmentation and Alignment with Language. One of the most interesting
challenges in this domain is that the field of view is an ongoing data stream. This
stream must be broken into units in order to compute which items are within
the speaker’s field of view at each point in the stream. We will call these units
visual context frames. The frequency at which these frames are captured will
affect the sensitivity of any algorithm that uses the resulting data. If the sample
frequency is too low, many visual events might be missed. The highest available
sample frequency is the frame rate of the video (30Hz).

Gaze Direction. In each video context frame, our system should discern which
items the viewer is looking at. An object’s proximity to the center of the field of
view [18] turned out to be a poor indicator of its visual salience. This is primarily
because many of the subjects had difficulty making fine-grained movements using
their keyboard controls, so they would sometimes pan just until the object came

Fig. 2. The speaker’s view when he said “will you punch that little button over there?”

Fig. 3. The view at the word “cabinets” Fig. 4. The view at the word “them”
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into view and then stop. Figure 2 shows an example. Although the speaker is
talking about the button, it is not in the center of his field of view. Also, an item
may move out of view by the time the speaker refers to it. For example, Figures
3 and 4 show the speaker panning the scene while saying “There’s a couple of
cabinets here. While I’m here, let me see if I can open the cabinets and not fall
into them.”

Foreground vs. Background Objects. Each visual context frame contains not only
items of interest in the task, but also walls, floors, ceilings, etc. These background
items are in view in most frames, therefore a model that simply favors items that
have been seen frequently/recently will over-weight such items.

2.2 Computational Linguistics Background

Computational Models of Referring. An automated agent that can collabo-
rate in rich domains such as ours will need sophisticated reference understanding
software. For collaborative agents, reference resolution is the module that pro-
vides a mapping from the noun phrases spoken by the user to the objects the
user intend to denote. For example, “Let’s see what’s in that room” might be
a command to explore a particular room, and the reference resolution module
determines which room the system thinks the user meant. For a given referring
expression, there are many possible places to search for the referent: the physical
context, items previously mentioned in the discourse, mutually known objects
from the ambient context such as ‘the president’, etc. Although individual al-
gorithms vary in their details, resolution systems primarily rely on linguistic
information such as syntax or semantics or the combination of these two. With
the development of multi-modal systems, researchers have begun to incorporate
visual information into the resolution process [19, 20, 22]. Most of this work is
still very preliminary. For example, Campana et al. [5] propose incorporating
eye-tracking into a reference resolution module to take advantage of gaze infor-
mation, but the idea is yet to be evaluated.

The process of reference resolution is normally modeled as two separate steps.
First, the context management step prepares a set of possible referents that
might be referred to in subsequent discourse. To contain the full list of available
referents, a system interacting in situated discourse will need:

– A Linguistic Context (LC) that contains a list of possible referents that are
introduced by the verbal interaction. This is used to track the attentional
state as it is portrayed by the discourse. Generally, the entities added are only
those that were mentioned as nominal constituents, however more recent al-
gorithms also add high-order referents such as events and propositions [7, 4].
In systems with a visual interaction component, GUI items are added to the
LC [17, 3, 15], because they are considered to be part of the communication
process.

– A Mutual knowledge Context (MC) that contains a list of the objects assumed
to be known to both parties before the conversation begins. For example,
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an airline reservation system might initialize its MC with a list of airline
companies and cities.

– A Visual Context (VC) to track items in the world that the partners have
interacted with and might discuss. In systems such as [9, 18] that allow the
user to move through a virtual world, items encountered by the users are
also added to the context. The VC represents the attentional state of the
conversational participants based on their extra-linguistic perception in the
world.

Taken together, these lists are meant to represent all of the entities which
might be mentioned in subsequent discourse.

Each time the context is updated with new entities, the relative salience of
all the items is adjusted. A small subset of LC entities comprise the current
linguistic focus of attention. A large variety of techniques exist for calculating
the focus or salience ranking from linguistic cues [28, 24, 27, 1]. For example,
items encountered or discussed recently carry more salience than items that have
not been mentioned recently. The salience update process might also take into
account attributes of the visual world. For example, Kaiser et al [16] developed a
model of visual salience for an augmented reality application using four factors:
time, stability, visibility, and center-proximity. Time represents persistence: the
portion of frames over a certain window in which the object appears. Stability
results in a penalty for objects that enter and leave the region multiple times.
Visibility represents the amount to which the user’s gesture overlaps with the
object’s visible projection, and center-proximity gives items at the center of the
user’s gaze or gesture a higher salience ranking.

The second step, interpreting referring expressions, is triggered as each re-
ferring expression is encountered and the context is searched for a semantically
compatible referent. The search may integrates a number of different properties
of the expression itself, the local linguistic context in which it appeared, and
the context as it existed when the expression was spoken. Information about
the expression itself can include lexical semantics, such as the lexical head and
agreement features, and also the form of the expression, i.e. whether it was a
pronoun, description, or locative adverb, etc. Different NP forms indicate differ-
ent relationships with the context, and therefore different search procedures are
invoked for each form. For example, to interpret a pronoun, the search begins
with entities that are judged to be most salient [12, 2, 11].

Information about the local context might include the predication context,
for example the expression might have been used to describe the PATIENT of
a PUSH() action. This information, combined with a semantic resource that
defines basic categories and the semantic restrictions on particular argument
positions, can provide a powerful level of discrimination for resolving ambiguous
phrases. A wide assortment of search methods for anaphora resolution have been
developed, some exploiting syntactic structure or semantic features, others using
statistical preferences (see [26] for a recent survey).
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2.3 Visual Perception and Context

We aim to determine the topic of an utterance using the visual context of the
speaker. Our definition of VC is the set of all objects that have ever been within
the speaker’s field of view and the timing information associated with their
appearances and disappearances. In our study, visual salience is defined as that
property of an entity in the VC that makes it the most likely topic of a person’s
utterance. We believe that a speaker’s allocation of visual attention provides a
reliable indicator of the relative visual salience of objects in the scene. Hence,
factors influencing visual attention can provide valuable information about an
object’s visual salience, which could then be used to determine the topic of
utterance.

Research in visual perception has shown that several factors influence the
focus of our attention when presented with complex scenes. A well established
theory in visual attention research is that the deployment of visual attention can
be “guided” by the result of preattentive visual processing [8, 14]. The preatten-
tive visual processing stage is of interest since it is known to be sensitive to
certain features, such as color, orientation, curvature, and size, which form a
feature-space in which the objects of our Quake world vary greatly. An object’s
novelty within this feature-space causes it to “pop-out”, making it the focus of
attention in later stages of visual processing [23].

Based on the role of the preattentive visual processing stage, we provide a
simple measure that quantifies the novelty of an object, and how it changes
over time, using a Uniqueness (U) parameter. Our definition of visual salience
does not require an object to be in the current field view for it to be selected
as the topic of the utterance. When an object falls out of view, its saliency is
determined not only by its Uniqueness, but also by the amount of time since it
was last seen (“recall delay”), and its exposure time before it dropped from view.
The positive and negative effects of recall delay and exposure (or presentation)
time on visual memory performance [10] is well known, and form the basis of
the Recency (R) and Persistence (P ) terms respectively.

3 Visual Salience Algorithm

As a person moves through the virtual world, different entities enter the visual
context, and the factors affecting their visual salience need to be updated peri-
odically.

Uniqueness (U): As mentioned earlier, the novelty of an object influences its
pop-out, and hence influences the deployment of attention over the scene. The
Uniqueness term models an object’s novelty based purely on how frequently the
object appears within the field of view. However, this model can be enhanced
using computer vision based approaches that utilize object features pertinent
to the preattentive visual processing stage (Sect. 2.3) to determine novelty. In
our current formulation, an entity such as the floor, by virtue of being almost
constantly visible within a given period, should be assigned a small U value,
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while an uncommon object (e.g., the button in the Quake world (Fig.2)) should
get assigned a relatively larger value. Initially all objects are assigned a maximum
U value of 1, signifying equal Uniqueness. At each instant, the U value of an
entity is penalized by a quantity proportional to the frequency of its occurrence
in the field of view over a time window called the Uniqueness Window (Tu),

Ui,j = Ui,j−1 − δ

δ = k ×
(

ni,j

Tu

)
(1)

where the subscripts i and j represent the object i.d., and the current time
instant, respectively. ni,j is the number of times object i was seen between j−Tu

and j. The constant of proportionality between the penalizing factor δ and the
frequency of occurrence is denoted by k.

An object seen often in the recent past would have a large δ value when
computed over a small Tu, and its Uniqueness would thus be heavily penalized.
This seems consistent with the phenomenon of object-based Inhibition-of-Return
(IoR), which states that “people are slower to return their attention to a recently
attended object” [6]. It should be noted that while in our model the U values
of all visible objects are penalized, a more faithful model of object-based IoR
would penalize only objects that were attended to in the scene.

Recency (R): Once an object drops out of the field of view, we assume that the
probability of it being the target of a referring expression decays with time. This
relation is analogous to the well known decay of visual memory with increase
in recall time [10]. A zero-centered Gaussian is chosen to model R. This profile
represents a slow decay in R immediately after an object disappears, followed
by a period of rapid decay that leads to an almost constant near-zero value,

Ri,j = e
−
( ti,j√

2σ

)2

, (t ≥ 0) (2)

where σ stands for the standard deviation (describe later), and ti,j is the length
of the time interval measured from j since object i was last seen. Note that all
objects currently visible have a maximum R value of 1.

Persistence (P): Analogous to the effect of presentation time on visual mem-
ory, the R values of different objects at each time instant should not only depend
on ti,j , but also on how long they were visible before disappearing. Persistence is
a simple measure of an object’s exposure time, computed as the frequency of oc-
currence of an object within a time interval, called the Persistence Window (Tp),

Pi,j =
mi,j

Tp
(3)

where mi,j is the number of times an object i was seen between j − Tp and j.
Intuitively, Tp should be large enough to allow objects to acquire significant P
values, and at the same time small enough to ensure that P values of tempo-
rally distant objects fade with time. The dependence of R on P is established
by making the value σ in Eq.2 proportional to P , such that
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σ = c × Pi,j

where c is a constant.

Visual Salience (S): At any instant, the combination of an object’s Uniqueness
and Recency determines its visual salience (S). Since neither a novel object seen
a long time ago, nor a common one that is currently visible, have high visual
salience, we define S such that only objects with large values of U and R would
get assigned a high visual salience value.

Si,j = Ui,j × Ri,j (4)

Since the range of U and R is [0,1], an Si,j = 1 corresponds to maximum visual
salience.

4 Our Study

We trained our model using a randomly selected five minute discourse segment
involving one pair of participants. We chose a small segment of data in this
pilot study due to the time-consuming process of manually annotating the video
frames. In order to quantify the relationship between the visual and linguistic
contexts without the possible interference of factors such as mutual knowledge,
we modeled the visual context of a single participant. Frames of the selected
video segment were manually annotated at a fixed time interval with a list of
objects visible in that frame. The manual annotation assumed perfect object
segmentation, that is, each visible object was given a unique label4, however
locative entities such as rooms were not considered in the frame annotations.
The algorithm takes a stream of frames in sequential order to create the VC.
For each sample frame, the objects in the visual context were ordered by their
visual salience as computed by the algorithm described in the previous section.

4.1 Our Baseline Algorithm

The closest comparable approach to our work presented in the literature is [18],
where “centrality” and “size” are used to determine visual salience in a simplis-
tic simulated 3D world. However the assumptions that form the basis of their
approach do not hold in our domain, thus preventing a direct comparison. As
described in Sect. 2.1, salient objects may not necessarily be in the centre of the
field of view. Further, since all entities in the perceptible world are potential
referents, the size feature is also inappropriate, since background objects like
walls, floors, and ceilings will always be assigned high salience. We hence resort
to a discourse-based salience model to provide a comparison to the proposed
approach.

4 Background entities such as walls, floors and ceilings were determined to be possi-
ble targets of reference and were, therefore, identified and annotated by color and
texture.
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The discourse-based reference resolution method worked as follows, and was
hand-simulated rather than automatically produced.

– The transcripts were manually segmented into units. Each independent
clause and each full constituent that was not part of a complete clause was
considered an independent unit.

– The LC was updated after each unit by forming a new context frame con-
taining an id for the referent of each base noun phrase in the unit, and adding
this frame to the beginning of the LC list.

– The salience of items in each frame was determined using a left-to-right,
breadth-first ordering on NP-based arguments in the utterance [26].

– Given an expression to match to a referent, each update frame in the context
was searched in order of recency starting from the utterance containing the
RE. Items in each context frame were compared to the RE and semantically
incompatible items were discarded. For example, the plural pronoun them
would not match a singular item, and a description such as the button only
matches buttons.

4.2 Experiments

Table 1 shows the count of test items in the development dataset used to tune
our visual attention algorithm, and the agreement between the item the speaker
referred to and the most salient item in the visual context, as computed by
our model. Items in the VC are rank-ordered using the visual attention model
described above in Section 3. The number of test items in this table is small
because we eliminated referring expressions that referred to items that were
never seen, such as generic entities and propositions, in order not to penalize the
algorithm for items it cannot track.

As the table demonstrates, using visual salience alone (Column (a)), we were
able to identify which entity the user is speaking about 41.5% of the time.
Column (a), titled “Absolute Highest Rank”, shows whether the most-salient
item, as calculated by our visual salience algorithm, was the correct referent.
The next set of columns show the effect of adding lexical semantics as a filter on

Table 1. Performance on different referring forms in the development corpus

Highest Ranked Highest Ranked
Absolute Semantic Match

VC VC LC
RE Form Count (a) (b) (c)

A/An N 2 1 2 1
The N 19 7 16 11
This/These N 1 0 0 1
That/Those N 4 3 3 2
This/That/These/Those 5 2 2 2
It/Them/They 10 4 4 6

Total 41 17 (41.5%) 27 (65.9%) 23 (56.1%)
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items in the context. For example, if the speaker says a button, the algorithm was
considered correct if the most salient button was the correct referent. Column
(b) shows the performance of our algorithm with the addition of lexical semantic
filtering. As a comparison, Column (c) shows the performance of the discourse-
only baseline algorithm, also with lexical semantic filtering.

Effect of Persistence Window and Uniqueness Window. Figures 5 and 6
show the effect of varying the length of the Persistence and Uniqueness Windows
on the performance of reference resolution for the development dataset. To ac-
count for the possibility of dependence on both parameters, Persistence Window
and Uniqueness Window were varied simultaneously. The maximum resolution
performance was then determined for each parameter to obtain the optimum
lengths of the Persistence and Uniqueness windows in the final algorithm. Fig-
ure 5 shows that, for the training dataset, the optimum Persistence window is
of length 65 seconds and the optimum Uniqueness window is 10 seconds long.
We use these same values for the testing dataset.

Effect of Sampling Frequency. The frequency of update of the visual con-
text can affect not just the performance of reference resolution but the space
and time complexity of the resolution algorithm as well. Keeping in mind the
goal of enabling real time reference resolution, it is important to minimize the
complexity of the algorithm. The performance of the reference resolution model
was observed while varying the frequency of visual context updates. The accu-
racy of reference resolution increases with the frequency of visual context update
(0.5Hz=31.70%, 1Hz=41.46%).

We used the development dataset to train these parameters, then tested the
algorithm again on two new portions of video, totalling approximately 9 minutes,
which used different speakers. The performance is shown in Table 2. The results
from our algorithm in this segment are slightly lower compared to that obtained
on the development set.

Two examples of correctly resolved noun phrases are shown in Figures 7 and 8.
In Figure 7, several objects are in the scene. The Quake logo was correctly chosen
for the pronoun that in spite of the presence of the table and background objects
such as the walls, ceilings and floors. In Figure 8, the correct referent (the button
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Table 2. Performance on different referring forms in the test corpus

Highest Ranked Highest Ranked
Absolute Semantic Match

VC VC LC
RE Form Count (a) (b) (c)

A/An N 1 1 1 0
The N 19 1 9 10
This/These N 8 1 4 2
That/Those N 6 4 4 4
This/That/These/Those 13 6 7 5
It/Them/They 20 8 10 18

Total 67 21 (31.3%) 35 (52.2%) 39 (58.2%)

Fig. 7. Speaker’s view when he said
“yeah so that needs to go there”

Fig. 8. Speaker’s view at “is there a sec-
ond button there”

on the right) associated with the phrase a second button was identified by our
system. Since this ambiguous expression is the first mention of this object in the
discourse, it will never be resolved by the baseline system.

5 Conclusions and Future Work

In this preliminary study we have created a model that assigns a salience mea-
sure to each object in the visual context, and automatically updates this value
as the speaker moves around in the world and interacts with his surroundings.
We use only this salience assignment (along with some minimal assistance from
other linguistic analyses, namely semantics) to determine the referents produced
by the speaker in two different discourse segments, with promising results. Sev-
eral aspects of the model were based on findings from related research on visual
attention and memory. The results obtained encourage us to believe that the
assumptions made were well-founded. Because our visual salience model per-
forms strongly compared to a baseline using linguistically-determined salience,
we expect that a fused model, using both sources of evidence, will perform better
than currently available methods for tracking the attentional state of a dialog in
service of reference resolution.
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We intend to develop an automatic process to identify the different ob-
jects in the field of view of a user by employing geometric constraints and
knowledge of the Quake world. Another stage of the pipeline that needs au-
tomation is the segmentation of the transcript into discourse units. With these
improvements, we would be able to test our model on larger data sets, and
also explore the effect of faster update rates (> 1 Hz). Further, we also in-
tend to incorporate visual characteristics of objects into our model to enable
us to better discriminate between objects in the visual context based on their
salience.
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