E. Goffman (personal communication, August 7, 1964) has asked rhetorically how people manage to walk down the street without continually bumping into each other. Part of the answer is that in our culture there are rules for walking down the street and for managing situations in which individuals find themselves in collectivities. Goffman (1963) has suggested some rules for these situations.

Just as it is desirable to avoid bumping into people on the street, it is desirable to avoid in conversations an inordinate amount of simultaneous talking. Beyond considerations of etiquette, it is difficult to maintain adequate mutual comprehensibility when participants in a conversation are talking at the same time.

The fact that participants in a conversation tend to take turns in speaking and listening has been frequently observed and discussed by other investigators. Yngve (1970)

This study was supported in part by MH 12,270 and MH 17,796 from the National Institute of Mental Health, and by Grant GS-355 from the Division of Social Science of the National Science Foundation. The author is grateful to Erving Goffman, Allen Marlow, and Allen Strodtman, who made valuable constructive criticisms of an earlier draft of this paper. The author wishes to express his appreciation to Susan Blackman, Mark Cody, Louis Martin, Roy O'Connor, Tom Shames, and Anne Baskin, who contributed to the transcriptions and data analysis. I am indebted to Diia Jenkins, W.A. Anderson, and the clients, who generously consented to serve as participants in this study.

Received for publication January 28, 1971, by Howard M. Becker, Jr., Department of Sociology, University of Chicago, and South University Avenue, Chicago, Illinois 60617.

SOME SIGNALS AND RULES FOR TAKING SPEAKING TURNS IN CONVERSATIONS

STARKEY DUNCAN, J. A.

University of Chicago

The turn-taking mechanism, whereby participants manage its smooth and appropriate enactment of speaking turns in face-to-face interaction, was studied.

Three basic signals for the mechanism: (1) those emitted by the speaker, (2) those emitted by the listener, and (3) those emitted by the audience, were identified. These signals are used and responded to in a relatively predictable manner describable in terms of a set of rules. Behavior in every conversation modality examined—context, oration, instruction, para-

lipseis, and so forth—were active as elements of the turn-taking signal.
ceived as discrete. The turn-taking signals are used and responded to according to rules. Signals, cues, and rules are described in detail below.

Turn taking is considered to be one of a number of communication mechanisms, such as those discussed by Schepers (1966), operating in face-to-face interaction. These mechanisms serve the function of integrating the performances of the participants in a variety of ways, for example, regulating the pace at which the communication proceeds, and monitor interpersonal transactions for appropriate conduct. Goffman (1955) comments on these integrating mechanisms in general and on turn taking in particular:

In any society, whatever the internal possibility of spoken interaction arises, it seems that a set of practices, conventions, and procedural rules comes into play which figures as a means of guiding and organizing the E-W of messages (p. 292).

The notice that a set of rules operates to integrate the turn-taking behavior of participants in a conversation is supported by Jaffe and Feldstein (1970), who also studied temporal patterns of speech and silence in dyadic conversations. Although they limited their data to the information provided by a "pair of voice-activated relays which treat any sound above threshold as equivalent [p. 113]." in their findings suggested to them further fractional rules that govern the matching of speech rates of the participants, the prohibition of interruption, and the requirement for property-oriented understanding and confirm the coordinated attention of the listener (p. 5).

SOURCE OF DATA

Interviews
The results to be reported were based on nineteen semi-structured interviews of speech and body behavior during the first 19 minutes of the dialogue, as recorded on videotape. The first interview was a preliminary interview held at the Counseling and Psychotherapy Research Center at the University of Chicago. This preliminary interview was part of the routine intake procedure at the Counseling and Psychotherapy Research Center, and the client was a regular applicant for therapy. A preliminary interview was chosen for intensive transcription of communication behaviors because within a rather compressed period of time a wide variety of types of interaction might be encountered, from simple information giving, such as

![Data Table](image)

Transcription

For this study, the primary requirements for the transcription were those of maximum behavioral transparency and of complete content of the interviews. Maximum transparency is desirable in analysis because it is not yet known which behavioral cues are the primary mediators of any given communication function. Completeness of transcription permits

(experiment noted, as in the example)

in semi-structured conversations (corresponding conditions)

So the complete analysis of set of two interviewers is dependent upon each other's point of view. As a point by point is

in terms of size, two interviewers are simultaneously

in the same room. Each is an observer and is influenced by the other's actions and reactions. As described in the transcription of English phonemes, the phonemes of both participants are involved in making the transcript, involving the better part of

Phonemes

Segmental phonemes. The phonemes which describe the messages within the first sound system, followed by the Trauger and Smilt (1957). They are the least important because

Supersegmental phonemes. Phonemes are commonly recognized because they include the phonemes

The Trauger-Smith scheme of segmental phonemes was upon identical to those described by the present author (Feldstein, 1969; Dunan A. Three terminal situations in which are described by Trauger-Smith system. These are consistent set of pitch intervals on the final syllable of phrase segments.

The point of departure in this study was the phonemes (Smith, 1957). A phonemic analysis of these data was made in the derivative of pitch intervals and only one primary feature in phonemes is the presence of pitch intervals automatically in some cases.
originally laborious discussion of paralysis for therapy. At the specific motive for this work was the artificial experimental stimuli were fortunate enough to catch a glimpse of anything which might had been doing previously, and the early twenties, working as a 40-year-old male, as an assistant, the two therapists known each other. The interaction was relaxed and the two therapists was another client. The interview had been seen in a preliminary second therapist had a total of two interviews. View is designated at Inter-}e
derson interaction. A design
the client is designated as (Roman) interviewers B, R and C. Thus, the participants are and d C.

interactions, the camera was switched in each interaction a head to foot on the tape or on other special
angle camera was set to participations. The camera and computers were not reused again until

A wide-angle lens was used closely at each distance from more subtle details of facial
It was used on the videotape

principal requirements for the base of maximum behavioral
study (no breaks in paral-lish would be desirable in analysis
known which behavioral as it was given communica-
tion of paralysis permits

the complex analysis of sequences of events: the basic concern of this study.

In terms of size, two 15-minute transcriptions of interaction are simultaneously very long and very large, despite data with a full perspective. From the point of view at the wealth of communication ex-
pended in each day by an individual, the transcription
of the other hand. These transcrip-
tions are believed to be unique in their breadth
and duration. As described below, there was a di-
tailed transcription of English sequential and supra-
sequential phenomena, paraphrasing and word usage
of both participants in the two interviews. The time
involved in making the two transcriptions was great, occupying the better part of 2 academic years.

Phonemes

Segmental Phonemes: Transcription of segmental phonology, which describe the way syllables are pronounced within the framework of the English sound system, followed the scheme developed by Trager and Smith (1957). The segmental phenomena were the most important components of the study. Suprasegmental Phonemes: The supra-sequential phenomena are commonly referred to as intonation. They include the phenomena of stress, pitch, and juncture.

The Trager-Smith scheme for transcribing supra-
sequential phenomena was used, with minor modifications
identical to those described in previous studies by the present author (Duncan, Rosenberg, & Feinberg, 1969; Duncan & Rosenblat, 1968).

Three terminal functions—stale, falling, and sustained—were transcribed in accordance with the Trager-Smith system. These functions are composed of extremes of pitch, intensity, and duration occurring on the final syllable of phonemic classes.

The point of departure for all subsequent analysis in this study was the phonemic class (Trager & Smith, 1957). A phonemic class is a phonological unit defined by Trager and Smith as containing one and only one primary stress and one or more junctures. Transcribing primary stresses and terminal junctures automatically identifies the phonemic classes in a corpus.

Paralanguage

Paralanguage refers to the wide variety of vocal behaviors that occur in speech but that are not part of the sound system of language, as traditionally conceived. Comparative ratings of paralinguistic behaviors have been compiled by Trager (1938), Crystal and Quirk (1964), and Crystal (1966). Any one speaker will probably use only a small fraction of the total behaviors available. The following list, which is adapted (1938) terminology, includes only those behaviors that play a part in the turn-taking signals: (a) intensity (over-loudness); (b) pitch height (over-loud-over-slow); and (c) ex-
tension and constraining of individual syllables. The terms in parentheses define the anchor point for each behavioral continuum. A wide variety of paralinguis-
tic behaviors was actually encountered in the two
days and included in the transcriptions.

Body Motion

In contrast to paralanguage, there was no available transcription system for body motion which could be readily applied to our "interviews." The situation is not to transcription evolved based on how the behaviors actually found in each interview. The transcription system for the first interview was created for first making an inventory of the movements used by the two participants and then assigning other arbitrary
or descriptive labels which to these movements. This sys-
tem was then applied to the second interview, after examining it to include new movements observed in the second interview.

While there is no pretense that the resulting transcription system is able to encompass all movements occurring in the culture, every attempt was to include all movements observed in the days under study. The transcription was in this sense comprehensive. Included were (a) head postures and movements (nodding, turning, pointing, shaking, etc.); (b) shoulder movements (e.g., shrugs); (c) facial expressions, such as could be directly seen; (d) hand gestures; and movements of all sorts (e.g., hand transmitted independently); (e) foot movements (e.g., independent); (f) leg movements; (g) sitting posture and sitting positions; and (h) use of artifacts, such as pipe, lantern, papers, and clipboard.

Coordination of Body Motion and Speech Transcriptions

Speech syllables were used to locate all trans-
scribed events. Thus, the movements and paral-
language phenomena in an interview were located with respect to the syllables emitted by the participant who happened to be speaking at the time, or to the pause between two syllables.

The Turn-Taking Mechanism

The variables for the turn-taking mecha-
nism were formulated as signals by which each participant indicated his state with re-
gard to the speaking turn. Given the display or absence of a given turn-taking signal by one participant, rules delineate the appropriate responses by the other participant.

The rules and signals, considered together, establish empirical expectations with respect to turn-taking activities at any given moment in a conversation, assuming that the partic-
IPANTS in the conversations under analysis are rule abiding for the most part. Data relevant to examining the turn-taking mechanisms are presented in the Results section.
Definitions

Definitions of "speaker," "auditor," and "simultaneous turns" are required to begin. A speaker is a participant in a conversation who claims the speaking turn at any given moment. A participant who does not claim the speaking turn at any given moment. In general, with the help of the turn-taking mechanism, the turn need not be disputed in the course of the conversation. However, when both participations claim the speaking turn at the same time, then the state of simultaneous turns obtains in the conversation and the turn-taking mechanism may be said to have broken down, or perhaps to have been discarded, for the duration of that state.

The term "simultaneous turns" is used here instead of the more usual term "simultaneous talking" because there will be certain circumstances, described below, in which talking by the auditor, even simultaneously with the speaker, does not imply a claim for the speaking turn. Therefore, the two terms should be differentiated.

When simultaneous turns occur, the auditor attempts to take his turn, and the original speaker continues with his turn. The turn-taking mechanism is not designed to explain how the state of simultaneous turns is resolved, that is, which one of the two speakers will continue and which one will fall silent. Metrau, Morris, and Hayes (1971) reported some interesting findings, based on techniques of "social psychophysics (p. 431)", on one mode of resolution.

Just as both participants may become speakers, claiming simultaneous turns, both participants may also become auditors, not claiming a turn. In this case, the obvious result is silence for the duration of that mutual state. The phenomenon — apparent avoidance of the turn by both participants — was not observed in the two interviews analyzed for this study and thus will not be discussed in this paper.

Turn Yielding

Rule

The auditor may take his speaking turn when the speaker gives a turn-yielding signal.

Under proper operation of the turn-taking mechanism, if the auditor acts to turn, then the speaker will immediately yield his turn.

A state of simultaneous turns can be created in two ways: (1) if the speaker attempts to take his speaking turn in the absence of a turn-yielding signal by the speaker or (2) if the speaker displays a yielding signal, and the auditor acts to take his turn, and the original speaker continues to claim his speaking turn. Neither of these sequences of events will occur in an interaction when the participants are adhering to the turn-taking mechanism.

The auditor is not obliged to take his speaking turn in response to a regular turn-yielding signal by the speaker. The auditor may alternatively communicate in the back channel (Yngve, 1970) or remain silent. Portions of the back channel are briefly described below.

Signal

A turn-yielding signal for a speaker is described as the display of at least one of a set of six discrete behavioral cues. These cues may be displayed either singly or together, when displayed together, they may occur either simultaneously or in short sequences. The six turn-yielding cues are listed below.

1. Intonation: the use of any pitch level—terminal function combination other than 2 1/2 at the end of a clause.

2. Pacing: the use of any pitch level—terminal function combination other than 2 1/2 at the end of a clause.

3. Intonation: the use of any pitch level—terminal function combination other than 2 1/2 at the end of a clause.

4. Pacing: the use of any pitch level—terminal function combination other than 2 1/2 at the end of a clause.

5. Pacing: the use of any pitch level—terminal function combination other than 2 1/2 at the end of a clause.

6. Pacing: the use of any pitch level—terminal function combination other than 2 1/2 at the end of a clause.

A frequent pattern of phonemic clauses in American English is a series of 2 1/2 clauses, which terminates in a final clause with a rising or falling pitch level—function combination. Any of these rising or falling combinations qualifies as a regular turn-yielding cue. A phonemic clause containing one of these
rising or falling combinations is referred to as a "terminal clause." 2. Paralanguage: Drawl: draw on the final syllable or on the stressed syllable of a word.

3. Body motion: the termination of any hand gesturalism (Kendon, 1967) used during a speaking turn or the relaxation of a tensed hand position (e.g., a fist) during a turn.

To account for the gesturalism observed in the two interviews, it is sufficient to define gesturalism as those hand movements generally away from the body, which commonly accompany, and which appear to bear a direct relationship to, speech.

Specifically excluded from the definition of gesturalism are self-adaptors and object adaptors (Ekman & Friesen, 1969). Self-adaptors involving the hands are movements in which the hand comes in contact with one's own body, often with the appearance of grooming. Examples would be rubbing the chin, scratching the cheek, smoothing the hair, brushing off the pants leg, picking lint (real or imaginary) from the socks, etc. Such self-adaptors are very frequent for many individuals both while they are speakers and while they are auditors. For present purposes, the definition of object adaptors is construed more narrowly than in Ekman and Friesen's definition. Movements considered to be object adoral in the initial interview were those movements having to do with Participant B's maintaining his pipe, and some movements in which the paper on his clipboard was wrinkled. Highly similar behaviors, termed "self-manipulatory gestures," were also studied by Roschel (1916).

4. Sociocentric sequences: the appearance of one of several stereotyped expressions, typically following a substantive statement. Examples are "but uh..." or "something," or "you know..." The three participants varied in the particular expressions used and in the frequency of their use. They were most common for the client. They were generally preceded by other gestural cues, and were often accompanied by a marked paralinguistic "trailing off" effect. The term sociocentric sequences was coined by Bernstein (1942), who contrasted these expressions in another context. These expressions do not add substantive information to the speech content that they follow. Instances in which the auditor proceeded to take his speaking turn during the completion of a sociocentric sequence are not considered as a state of simultaneous turns in the conversation. Rather, such an act is considered to be an instance of permissible simultaneous talking.

5. Paralanguage: Pitch loudness: a drop in paralinguistic pitch and/or loudness in conjunction with one of the sociocentric sequences described above. When used, these expressions typically followed a terminal clause but did not often share the same paralanguage.

Attempt-Suppressing Signal Rule

An attempt-suppressing signal displayed by the speaker maintains the turn for him, regardless of the number of yielding cues concurrently being displayed. Auditors almost never attempted to take their turn when this signal was being displayed.

Signal

The attempt-suppressing signal consists of one or both of the speaker's hands being engaged in gesturalism. Self- and object adaptors do not operate as attempt-suppressing signals. Dropping of the gesturalizing hand or hands into a rest position, as on the arm of a chair, constitutes a turn-yielding cue (see 1 described above). It should be noted that much speech is not accompanied by gesturalism, and therefore neither the attempt-suppressing signal nor its coordinate yielding cue would be applicable for that speech.

Back-Channel Communication Rule

The term "back channel" was introduced in the context of turn taking by Yagye (1970) to cover such messages as "mm-hmm" and head nods from the auditor. In this sense, the term is roughly equivalent to
Kendon's (1967) "accomplishment behavior" and Ditchman and Llewellyn's (1968) "listener response." For the purposes of this study, it is sufficient to point out that a back-channel communication does not constitute a turn or a claim for a turn. To the contrary, it appears that when a speaker is displaying a turn-taking signal, the back channel is often used by the auditor to avoid taking his speaking turn. In this sense, taking a turn and communicating in the back channel may be considered to be contrasting tasks an auditor faces with a yielding signal, may take.

It is important to note that, because back-channel signals do not constitute a turn or a claim for a turn, their displays by the auditor simultaneously with the speaker's speech is not considered to be a state of simultaneous turns in the dyad.

Signal

It is suggested that back-channel communication comprises a large and complex set of signals, which at present may not be well understood. These signals may participate in a variety of communication functions, including the regulation of speaking turns. It is proposed that "back channel" be expanded to refer to this broader class of signals, as it is progressively documented.

In addition to the back-channel signals such as "Hmm-hmm," "Yeah," and head nods mentioned above, the following back-channel signals were observed in our interviews: (a) sentence completions, in which the auditor completed a sentence that the speaker had begun (independently reported by Yuvec, 1970); (b) brief requests for clarification; and (c) restatements in a few words of an immediately preceding thought expressed by the speaker.

Unit of Analysis

In order to subdivide the interviews, a unit of analysis was chosen which in size lay between the phonemic clause and the speaking turn. Every cue display and every instance of smooth exchange of turns or simultaneous turns occurring in the interviews was located with respect to these units. As with the yielding signal, the unit was defined in terms of the display of at least one of a number of behaviors in syntax, intonation, paralanguage, and body motion.

Specifically, boundaries of the unit were defined as being (a) at the ends of phonemic clauses (b) which additionally were marked by the display of one or more of the floor-yielding cues described above, and/or by the display of one or more of the following cues:

1. Silenced pause: an appreciated, audible pause following the phonemic clause.
2. Head direction: turning of the speaker's head toward the auditor. This cue is identical to the speaker's part of the gaze-direction pattern discovered by Kendon (1967).
3. Paralanguage: a drop in paralinguistic pitch and/or loudness in conjunction with a phonemic clause, either across the entire clause or across its final syllable or syllable.
4. Body motion (for Participant A only): a relaxation of the foot that was marked by a joint flexion. (Throughout the interview the client's legs were stretched out in front of her and were crossed at the ankle.) From time to time one or both feet would be flexed dorsally, such that they assumed a nearly perpendicular angle to the floor. Their falling, as a result of relaxing the feet, was the cue.

Each of these behaviors appeared to play a part in the speaker's segmentation of his comment and in the timing and placement of the auditor's turn-taking and back-channel responses.

RESULTS

The rules for turn yields and attempts suppressing lead to the expectations that (a) the occurrence of simultaneous turns will be associated primarily with the auditor's turn-taking attempts when zero yielding cues (i.e., the absence of a yielding signal) are being displayed by the speaker, and (b) display of the attempt-suppressing signal by the speaker will sharply reduce the auditor's turn-taking attempts in response to yielding cues. In addition, auditor attempts to ignore the floor appeared to vary as a function of number of yielding cues conventionally displayed. Data analyses are presented relevant to these three empirical issues.

Table 1, on which the analyses were based, presents the data, summed over the two interviews, for auditor turn-taking attempts and

The relationship between zero-yielding cues and the occurrence of simultaneous turns from a turn-taking state may be tested by applying Table 1, a 2 × 2 contingency table from Table 2, to (df = 1).
Table 1

<table>
<thead>
<tr>
<th>Speaker yielding cue display</th>
<th>Auditory turn-taking attempt</th>
<th>Simultaneous turns resulting and the display of the attempt-suppressing signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of attempts</td>
<td>Frequency of display</td>
<td>Simultaneous turns resulting and the display of the attempt-suppressing signal</td>
</tr>
<tr>
<td>N</td>
<td>P</td>
<td>α</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>.00</td>
</tr>
<tr>
<td>12</td>
<td>.32</td>
<td>.12</td>
</tr>
<tr>
<td>13</td>
<td>.13</td>
<td>.18</td>
</tr>
<tr>
<td>13</td>
<td>.13</td>
<td>.18</td>
</tr>
</tbody>
</table>

No attempt-suppressing signal displayed

Attempt-suppressing signal displayed

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>α</th>
<th>N</th>
<th>P</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>.00</td>
<td>.09</td>
<td>109</td>
<td>.00</td>
<td>.09</td>
</tr>
<tr>
<td>108</td>
<td>0.02</td>
<td>.02</td>
<td>108</td>
<td>0.02</td>
<td>.02</td>
</tr>
<tr>
<td>8</td>
<td>.00</td>
<td>.00</td>
<td>8</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>417</td>
<td>.00</td>
<td>.00</td>
<td>417</td>
<td>.00</td>
<td>.00</td>
</tr>
</tbody>
</table>

*Standard deviation = \(\sqrt{N} \)

resulting simultaneous turns, in terms of (4) the number of turn-yielding cues consistently displayed and (6) the display or absence of the attempt-suppressing signal. Percentages of auditor attempts in response to a given number of cues were calculated as the number of displays of those cues. Percentages of simultaneous turns were calculated by dividing the number of simultaneous turns by the number of attempts.

The relationship between the display of zero yielding cues by the speaker and the occurrence of simultaneous turns resulting from a turn-taking attempt by the auditor may be tested by applying chi-square to Table 2, a 2 X 2 contingency table derived from Table 1 (\(\chi^2 = 52.31 \), corrected for continuity, \(df = 1 \). When \(df = 1 \), a chi-square of 10.8 has an associated probability of .001).

When no attempt-suppressing signal was displayed, the correlation between number of yielding cues displayed and percentage of auditor turn-taking attempts was .86 (\(df = 4 \)). This correlation accounts for 92% of the variance. The analysis of variance for the regression is presented in Table 3. The \(F \) value for the analysis was 50.33. (When \(df = 1/4, \) an \(F \) value of 21.2 is significant at the .01 level of significance.) The data points and the regression line are plotted in the left half of Figure 1 if should be noted that the data point for the display of six cues was not included in the regression because there were only two such cases, thereby giving a relatively unreliable estimate for that point. It happens, however, that the data point falls precisely on the regression line as may be seen in Figure 1.

The results on auditor attempts were sharply different when the speaker was dis-
TABLE 3

PERCENTAGE OF AUDITOR TURN-TAKING ATTEMPTS IN RESPONSE TO NUMBER OF YIELDING CUTS DISPLAYED: ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributable to regression</td>
<td>4.63</td>
<td>1</td>
<td>4.63</td>
<td>8.73</td>
</tr>
<tr>
<td>Deviation from regression</td>
<td>10.54</td>
<td>29</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15.17</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Percentage of auditor turn-taking attempts in response to number of yielding cuts displayed: analysis of variance.

Cues were completely displayed, the probability of a turn-taking attempt by the auditor increased in a strictly linear fashion. On the other hand, the display of an attempt-suppressing signal essentially eliminated the auditor’s tendency to take his turn, regardless of the number of yielding cues concurrently displayed. Because the auditor’s attempts were so thoroughly suppressed by the signal, it was not possible to infer from the data the likelihood of simultaneous turns resulting from turn-taking responses to the suppressing signal.

It should be noted that the display of any number of yielding cues by the speaker, in the absence of a suppressing signal, did not automatically result in an attempt by the auditor. At best, the probability of an auditor attempt appears to be about 30. Thus, the auditor retains considerable discretion over his responses. Either the speaker or the auditor may disregard the turn-taking mechanism, so that a state of simultaneous turns is produced. In the present data the occurrence of auditor turn-taking attempts when zero yielding cues were being displayed may be attributed to an interval when the display was not associated with the speaker’s intent.

This study was based on the idea that interactive, turn-taking situations are characterized by a variety of cues. Interpreting and responding to these cues, the auditor behaves optimally. The focus is on the interaction between the auditor and the speaker, with the auditor’s intent being a major factor in deciding whether to take the turn. The auditor’s behavior is influenced by the cues presented, and the auditor’s response is a function of these cues. This is evident in the regression analysis shown in Table 3, where the percentage of turn-taking attempts increases with the number of yielding cues displayed, reaching a maximum at zero cues. However, even when cues are displayed, the auditor’s tendency to take the turn decreases, as indicated by the regression coefficient.

A primary obstacle to successful communication is the complexity of interpersonal interactions. In such situations, the auditor must be able to interpret the cues accurately and respond appropriately. The regression analysis provides a quantitative measure of the auditor’s response, allowing for a more objective evaluation of turn-taking behavior. It highlights the importance of cues in determining the auditor’s intent, and emphasizes the need for effective communication strategies to ensure successful turn-taking in complex situations.

Fig. 1. Auditor’s turn-taking attempts in response to the display of yielding cues and attempt-suppressing signals (as shown in parentheses).
The turn-taking signals provide an example of the usefulness of behaviorally comprehensive research. The cues comprising this signal were found in every communication modality examined: content, syntax, intonation, paralinguage, and body motion.

The behavioral breadths in the yielding signal provides it with the desirable property of flexibility. No single communication modality is required in order to display a signal. The yielding signal may also be said to possess the property of generality, in that the cues for the signal are formulated in terms of general properties of behaviors, rather than specific acts. For example, it is not a specific intonation pattern that serves as a cue, but simply any deviation from the 2 pattern; not a specific gesturalization, but cessation of the gesture, or relaxation of a tensed band position; not a specific paralinguistic pattern, but a drop from the preceding pattern in pitch and/or loudness, and so on.

Further research is underway on various aspects of the turn-taking mechanism using our transcriptions. The distribution and functions of the impressively large and complex class of back-channel signals are being investigated. The notion of floor-requesting signals by the auditor, suggested by Yingve (1970), is being explored, including the possibility that it may be in some sense an ongoing negotiation for the floor by speaker and auditor.

By listing three types of signals and as many rules, a turn-taking mechanism can be described which accounts for extensive portions of the turn-taking behavior in the two interviews under examination. The overall strength of the results underscores the potential of further research into the rule-governed aspects of behavior.

The rules for turn-taking were designed to be applicable across a wide range of individual styles and communication contexts. There is room for appreciable variation in their use. For example, variation may be found in the use of (a) the attempt-suppressing signal; (b) back-channel communications in lieu of turn-taking attempts; (c) the number of multivariate turns created either by the speaker or by the auditor, and (d) the num-